Featured Research

from universities, journals, and other organizations

How Earth survived its birth: New simulation reveals planet migration prevents plunge into Sun

Date:
January 8, 2010
Source:
American Museum of Natural History
Summary:
New simulations show how planets form and maintain an orbit around a developing solar system. Until now, models plunged Earth-like objects into the stars they orbit.

New simulations show that variations in temperature can lead to regions of outward and inward migration that safely trap planets on orbits around their sun.
Credit: iStockphoto/Kirill Putchenko

For the last 20 years, the best models of planet formation -- or how planets grow from dust in a gas disk -- have contradicted the very existence of Earth. These models assumed locally constant temperatures within a disk, and the planets plunge into the Sun. Now, new simulations from researchers at the American Museum of Natural History and the University of Cambridge show that variations in temperature can lead to regions of outward and inward migration that safely trap planets on orbits.

When the protoplanetary disk begins to dissipate, planets are left behind, safe from impact with their parent star.

The results of this research are being presented at the 2010 meeting of the American Astronomical Society in Washington, D.C.

"We are trying to understand how planets interact with the gas disks from which they form as the disk evolves over its lifetime," says Mordecai-Mark Mac Low, Curator of Astrophysics and Division Chair of Physical Sciences at the Museum. "We show that the planetoids from which the Earth formed can survive their immersion in the gas disk without falling into the Sun."

During the birth of a star, a disk of gas and dust forms. The midplane of this dusty disk is opaque and cannot quickly cool by radiating heat to outer space. Until recently, no one has included temperature variation in models of planet formation.

Co-author Sijme-Jan Paardekooper of the University of Cambridge ran groundbreaking new simulations like that most recently published online (http://arxiv.org/abs/0909.4552). His work shows that the direction of migration of low-mass planets in disks depends on the detailed temperature structure of the disk. This key insight lays the groundwork for the current work.

The American Astronomical Society presentation incorporates the results of Paardekooper's local models into the long-term evolution of the temperature and density structure of a protoplanetary disk. The result of the simulation is that, over the lifetime of a disk, planets get trapped in orbits between regions of inward and outward migration. The orbits slowly move inward as the disk dissipates. Once the gas densities drop low enough for the planets to no longer be influenced by disk, the planets are dropped into an orbit similar to the orbits of planets around the Sun. The radius of the orbit at which a planet is released depends on its mass.

"We used a one-dimensional model for this project," says co-author Wladimir Lyra, a postdoctoral researcher in the Department of Astrophysics at the Museum. "Three dimensional models are so computationally expensive that we could only follow the evolution of disks for about 100 orbits -- about 1,000 years. We want to see what happens over the entire multimillion year lifetime of a disk."

Mac Low is presenting this research at the upcoming American Astronomical Society meetings in Washington, D.C. on January 6 with a press conference on the following day (January 7 at 10:30 am: "Spicing up the solar system.") A research paper is currently submitted to The Astrophysical Journal, authored by Lyra, Paardekooper, and Mac Low. This research was funded by the American Museum of Natural History, the National Science Foundation, and NASA.


Story Source:

The above story is based on materials provided by American Museum of Natural History. Note: Materials may be edited for content and length.


Cite This Page:

American Museum of Natural History. "How Earth survived its birth: New simulation reveals planet migration prevents plunge into Sun." ScienceDaily. ScienceDaily, 8 January 2010. <www.sciencedaily.com/releases/2010/01/100107114433.htm>.
American Museum of Natural History. (2010, January 8). How Earth survived its birth: New simulation reveals planet migration prevents plunge into Sun. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2010/01/100107114433.htm
American Museum of Natural History. "How Earth survived its birth: New simulation reveals planet migration prevents plunge into Sun." ScienceDaily. www.sciencedaily.com/releases/2010/01/100107114433.htm (accessed April 24, 2014).

Share This



More Space & Time News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nuclear-Level Asteroids Might Be More Common Than We Realize

Nuclear-Level Asteroids Might Be More Common Than We Realize

Newsy (Apr. 23, 2014) — The B612 Foundation says asteroids strike Earth much more often than previously thought, and are hoping to build an early warning system. Video provided by Newsy
Powered by NewsLook.com
NASA Chief Outlines Plan for Human Mission to Mars

NASA Chief Outlines Plan for Human Mission to Mars

AFP (Apr. 22, 2014) — NASA administrator Charles Bolden, speaking at the 'Human to Mars Summit' in Washington, says that learning more about the Red Planet can help answer the 'fundamental question' of 'life beyond Earth'. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Nasa Gives You An Excuse to Post a Selfie on Earth Day

Nasa Gives You An Excuse to Post a Selfie on Earth Day

TheStreet (Apr. 22, 2014) — NASA is inviting all social media users to take a selfie of themselves alongside nature and to post it to Twitter, Facebook, Flickr, Instagram, or Google Plus with the hashtag #globalselfie. NASA's goal is to crowd-source a collection of snapshots of the earth, ground-up, that will be used to create one "unique mosaic of the Blue Marble." This image will be available to all in May. Since this is probably one of the few times posting a selfie to Twitter won't be embarrassing, we suggest you give it a go for a good cause. Video provided by TheStreet
Powered by NewsLook.com
SpaceX's Dragon Spacecraft Captured by International Space Station

SpaceX's Dragon Spacecraft Captured by International Space Station

Reuters - US Online Video (Apr. 20, 2014) — SpaceX's unmanned Dragon spacecraft makes a scheduled Easter Sunday rendezvous with the International Space Station. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins