Featured Research

from universities, journals, and other organizations

Growing cartilage: bioactive nanomaterial promotes growth of new cartilage

Date:
February 8, 2010
Source:
Northwestern University
Summary:
Researchers have designed a bioactive nanomaterial that promotes the growth of new cartilage in vivo and without the use of expensive growth factors. The therapy is minimally invasive, utilizes bone marrow stem cells and produces natural cartilage. Unlike bone, cartilage does not grow back, and it cannot effectively be replaced. Countless people learn this all too well when they bring their bad knees, shoulders and elbows to an orthopedic surgeon.

3D illustration of the knee. Damaged cartilage can lead to joint pain and loss of physical function and eventually to osteoarthritis.
Credit: iStockphoto/Sebastian Kaulitzki

Northwestern University researchers are the first to design a bioactive nanomaterial that promotes the growth of new cartilage in vivo and without the use of expensive growth factors. Minimally invasive, the therapy activates the bone marrow stem cells and produces natural cartilage. No conventional therapy can do this.

Related Articles


The results will be published online the week of Feb. 1 by the Proceedings of the National Academy of Sciences (PNAS).

"Unlike bone, cartilage does not grow back, and therefore clinical strategies to regenerate this tissue are of great interest," said Samuel I. Stupp, senior author, Board of Trustees Professor of Chemistry, Materials Science and Engineering, and Medicine, and director of the Institute for BioNanotechnology in Medicine. Countless people -- amateur athletes, professional athletes and people whose joints have just worn out -- learn this all too well when they bring their bad knees, shoulders and elbows to an orthopaedic surgeon.

Damaged cartilage can lead to joint pain and loss of physical function and eventually to osteoarthritis, a disorder with an estimated economic impact approaching $65 billion in the United States. With an aging and increasingly active population, this is expected to grow.

"Cartilage does not regenerate in adults. Once you are fully grown you have all the cartilage you'll ever have," said first author Ramille N. Shah, assistant professor of materials science and engineering at the McCormick School of Engineering and Applied Science and assistant professor of orthopaedic surgery at the Feinberg School of Medicine. Shah is also a resident faculty member at the Institute for BioNanotechnology in Medicine.

Type II collagen is the major protein in articular cartilage, the smooth, white connective tissue that covers the ends of bones where they come together to form joints.

"Our material of nanoscopic fibers stimulates stem cells present in bone marrow to produce cartilage containing type II collagen and repair the damaged joint," Shah said. "A procedure called microfracture is the most common technique currently used by doctors, but it tends to produce a cartilage having predominantly type I collagen which is more like scar tissue."

The Northwestern gel is injected as a liquid to the area of the damaged joint, where it then self-assembles and forms a solid. This extracellular matrix, which mimics what cells usually see, binds by molecular design one of the most important growth factors for the repair and regeneration of cartilage. By keeping the growth factor concentrated and localized, the cartilage cells have the opportunity to regenerate.

Together with Nirav A. Shah, a sports medicine orthopaedic surgeon and former orthopaedic resident at Northwestern, the researchers implanted their nanofiber gel in an animal model with cartilage defects.

The animals were treated with microfracture, where tiny holes are made in the bone beneath the damaged cartilage to create a new blood supply to stimulate the growth of new cartilage. The researchers tested various combinations: microfracture alone; microfracture and the nanofiber gel with growth factor added; and microfracture and the nanofiber gel without growth factor added.

They found their technique produced much better results than the microfracture procedure alone and, more importantly, found that addition of the expensive growth factor was not required to get the best results. Instead, because of the molecular design of the gel material, growth factor already present in the body is enough to regenerate cartilage.

The matrix only needed to be present for a month to produce cartilage growth. The matrix, based on self-assembling molecules known as peptide amphiphiles, biodegrades into nutrients and is replaced by natural cartilage.

The National Institutes of Health and the company Nanotope supported the research.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Samuel Stupp, Ramille Shah, Nirav Shah, Marc M. Del Rosario Lim, Caleb Hsieh and Gordon Nuber. Supramolecular Design of Self-assembling Nanofibers for Cartilage Regeneration. Proceedings of the National Academy of Sciences, Feb 1, 2010

Cite This Page:

Northwestern University. "Growing cartilage: bioactive nanomaterial promotes growth of new cartilage." ScienceDaily. ScienceDaily, 8 February 2010. <www.sciencedaily.com/releases/2010/02/100201171649.htm>.
Northwestern University. (2010, February 8). Growing cartilage: bioactive nanomaterial promotes growth of new cartilage. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2010/02/100201171649.htm
Northwestern University. "Growing cartilage: bioactive nanomaterial promotes growth of new cartilage." ScienceDaily. www.sciencedaily.com/releases/2010/02/100201171649.htm (accessed October 30, 2014).

Share This



More Health & Medicine News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Google To Use Nanoparticles, Wearables To Detect Disease

Google To Use Nanoparticles, Wearables To Detect Disease

Newsy (Oct. 29, 2014) Google X wants to improve modern medicine with nanoparticles and a wearable device. It's all an attempt to tackle disease detection and prevention. Video provided by Newsy
Powered by NewsLook.com
Can Drinking Milk Lead To Early Death?

Can Drinking Milk Lead To Early Death?

Newsy (Oct. 29, 2014) Researchers in Sweden released a study showing heavy milk drinkers face an increased mortality risk from a variety of causes. Video provided by Newsy
Powered by NewsLook.com
Obama: The US Will Not 'run and Hide' From Ebola

Obama: The US Will Not 'run and Hide' From Ebola

AP (Oct. 29, 2014) Surrounded by health care workers in the White House East Room, President Barack Obama said the U.S. will likely see additional Ebola cases in the weeks ahead. But he said the nation can't seal itself off in the fight against the disease. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins