Featured Research

from universities, journals, and other organizations

Molecular 'firing squad' in mice triggered by overeating destroys metabolism

Date:
February 5, 2010
Source:
Harvard School of Public Health
Summary:
Overeating in mice triggers a molecule once considered to be only involved in detecting and fighting viruses to also destroy normal metabolism, leading to insulin resistance and setting the stage for diabetes.

Overeating in mice triggers a molecule once considered to be only involved in detecting and fighting viruses to also destroy normal metabolism, leading to insulin resistance and setting the stage for diabetes. The new study, led by researchers at the Harvard School of Public Health (HSPH), specifically links together the immune system and metabolism, a pairing increasingly suspected in diseases that include -- in addition to diabetes -- heart disease, fatty liver, cancer, and stroke.

Related Articles


Understanding how to regulate the molecule through targeted drugs or nutrients could eventually change the way these diseases are prevented and treated in humans.

The study will publish in the February 5, 2010, issue of Cell.

"When mice eat a normal diet, this molecule called PKR is silent," said senior author Gökhan Hotamisligil, chair of the HSPH Department of Genetics and Complex Diseases. "However, if a cell containing PKR is bombarded with too many nutrients, PKR grabs other immune system molecules that respond to this food attack and organizes a firing squad to shoot down normal processes, leading to insulin resistance and metabolic dysfunction."

The results provide compelling evidence that a process called "metaflammation" occurs in the body, said Hotamisligil. Metaflammation is inflammation triggered by the metabolism of nutrients that occurs when the body processes food into energy. Previous studies by Hotamisligil had demonstrated inflammation in metabolic diseases such as obesity, type 2 diabetes, and heart disease in mice and humans.

"We know that nutrients can be detrimental in excess quantities or when they are in the wrong place at the wrong time," Hotamisligil said. "But we don't quite understand which paths they travel that result in harm and produce inflammation. PKR is a mechanism by which nutrients -- necessary and beneficial under normal conditions -- cause damage to cells and organs."

The researchers used sets of mice in their experiments. One set had PKR in its bodies, and the other set did not. The scientists then overfed a group of PKR-positive and PKR-negative mice high-fat, high-calorie diets. The overfed mice with PKR became obese and developed insulin resistance, while the overfed mice without PKR gained significantly less weight and did not develop insulin resistance, indicating that absence of PKR can alleviate harmful metabolic effects due to overeating in mice.

Now the researchers will turn their attention to identifying which nutrients cause the adverse effects. "One of the difficulties in understanding how our diet is integrated into disease risk is our inability to understand what specific component of a diet is actually regulating particular responses in humans," said Hotamisligil. "So the discovery of this molecule actually gives us a very specific way to identify the harmful components of the diet."

Results from those studies could be available within a couple of years, Hotamisligil predicted, after which human trials would be needed on potential drugs or nutrients that could regulate PKR.

This study was supported by a grant from the National Institutes of Health. The first author was Takahisa Nakamura, a research fellow in the HSPH Department of Genetics and Complex Diseases who was supported by a Human Frontier Science Program Fellowship Award and the Uehara Memorial Foundation. Other co-authors are supported by fellowships from the Japan Society for the Promotion of Science and the American Diabetes Association.


Story Source:

The above story is based on materials provided by Harvard School of Public Health. Note: Materials may be edited for content and length.


Journal Reference:

  1. Takahisa Nakamura, Masato Furuhashi, Ping Li, Haiming Cao, Gurol Tuncman, Nahum Sonenberg, Cem Gorgun, and Gökhan Hotamisligil. Double-stranded RNA-dependent Protein Kinase Links Pathogen Sensing with Stress and Metabolic Homeostasis. Cell, February 5, 2010

Cite This Page:

Harvard School of Public Health. "Molecular 'firing squad' in mice triggered by overeating destroys metabolism." ScienceDaily. ScienceDaily, 5 February 2010. <www.sciencedaily.com/releases/2010/02/100204144429.htm>.
Harvard School of Public Health. (2010, February 5). Molecular 'firing squad' in mice triggered by overeating destroys metabolism. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2010/02/100204144429.htm
Harvard School of Public Health. "Molecular 'firing squad' in mice triggered by overeating destroys metabolism." ScienceDaily. www.sciencedaily.com/releases/2010/02/100204144429.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins