Featured Research

from universities, journals, and other organizations

Science used to decode the secrets of Olympic skeleton sliding

Date:
February 12, 2010
Source:
Rensselaer Polytechnic Institute
Summary:
Olympic skeleton athletes will hit the ice next month in Vancouver, where one-hundredths of a second can dictate the difference between victory and defeat. Using state-of-the-art flow measurements, engineers are employing science and technology to help the US skeleton team trim track times and gain an edge over other sliders.

Using state-of-the-art flow measurements, engineering professor Timothy Wei and students at Rensselaer Polytechnic Institute in Troy, N.Y., are employing science and technology to help the U.S. skeleton team trim track times and gain an edge over other sliders.
Credit: Image courtesy of Rensselaer Polytechnic Institute

Olympic skeleton athletes will hit the ice next month in Vancouver, where one-hundredths of a second can dictate the difference between victory and defeat.

Related Articles


Using state-of-the-art flow measurements, engineering professor Timothy Wei and students at Rensselaer Polytechnic Institute in Troy, N.Y., are employing science and technology to help the U.S. skeleton team trim track times and gain an edge over other sliders.

"Not much is known about the actual mechanics of skeleton, so we developed a unique suite of tools to help pull back the curtain a bit," said Wei, head of Rensselaer's Department of Mechanical, Aerospace, and Nuclear Engineering, who has previously worked with U.S. Olympic swimming coaches and athletes. "Even in the short time since developing the system, we have learned a whole lot more about how the athlete's suit, helmet, body movements, and positioning affect aerodynamics."

"The real-time aerodynamics work that Rensselaer has provided for us has helped to fine-tune our athletes' body positions and equipment in a way that we've never experienced before," said USA Skeleton Technology Coordinator Steve Peters. "These new concepts will give our athletes the data they need to remain competitive with the rest of the world."

Lying face-down, and hitting speeds of more than 70 mph (112 kph), skeleton athletes maneuver their sleds down an icy, mostly-covered track rife with twists and turns. Skeleton sleds feature no steering or braking mechanisms, so body control and balance are critical for navigating the tracks. A relatively young sport, skeleton was permanently added to the Olympic program in 2002. Skeleton is rigorous on an athlete's body -- the vibrations and bodily stress are so intense that even Olympic contenders usually cannot slide more than four times per day, making it difficult to collect data.

So Wei set out to build a system that accurately simulated an actual skeleton run, while collecting as much data as possible. The professor understood that the more drag, or wind resistance, an athlete creates, the slower he or she is going to slide, so Wei needed to find a way to examine all the different variables: the clothing, headgear, and body position of sliders, as well as the skeleton sled itself. Studying drag requires wind, and the skeleton sled was slightly too large to fit into either of Rensselaer's two wind tunnels. The jet of air exiting the exhaust vent of the wind tunnel, however, worked perfectly.

Wei and his students created a replica section of a skeleton track directly behind the wind tunnel. They built sensors into the floor of the replica, onto which they placed a skeleton sled. Each sensor was fit with an oscilloscope, and sent digital data to a nearby computer that calculated the sled's pitch, roll, and balance -- technical terms for indicating if the slider is leaning backward, forward, left, or right. The sensors also measured wind resistance, or drag.

With a skeleton athlete lying on a sled in the test track, Wei turned on the wind tunnel. The steady stream of air exiting the wind tunnel's exhaust replicated the conditions of an actual skeleton run. Wei and his team cut a hole in the bottom of the test track, slid in a computer monitor, and covered the hole with clear plastic. This allowed the athletes to view, in real time, data and graphs clearly illustrating the impact that every little lean or tilt had on wind resistance, and thus on their speed. One side wall of the track was also made from clear plastic, allowing coaches to observe the tests.

Wei and Peters brought 10 different skeleton athletes to Rensselaer for a test run on the new system. They tested a wide variety of skeleton suits and gear, some of which, Wei said, certainly created more drag than others.

"This is more information than these athletes have ever had about the impact of what they're doing while sliding," Wei said. "It was a real eye-opener for them."

To further test the athletes, suits, and headgear, Wei also developed a state-of-the-art diagnostic tool using a video-based flow measurement technique known as Digital Particle Image Velocimetry (DPIV). He bounced a green pulse laser off a cylindrical lens to create a thin sheet of light, which he shined over the shoulders of athletes laying the test system. Wei then introduced theatrical fog into the front of the test bed.

Wei videotaped the fog as it was pushed around by the wind tunnel exhaust, and then used sophisticated mathematics, computer modeling, and stop-motion video to track the behavior of the swirly fog as it rolled off the bodies and heads of the athletes. This data, he said, can be used to identify vortices, pinpoint the movement of air, and hopefully identify new and more detailed methods for skeleton athletes to reduce their drag.

Meanwhile, a team of undergraduate students in the O.T. Swanson Multidisciplinary Design Lab (MDL) at Rensselaer looked at different engineering techniques to help improve the skeleton sleds. They developed a data acquisition system for the sleds, which measured specific mechanical properties of the sled in real-time as the athlete guided it down the track. One component of this system is a camera that attaches to the slider's helmet, providing athletes and coaches with a new proof-of-concept tool from which to learn.

Wei is no stranger to applying science and technology to the world of sports. He has been working with USA Swimming for several years, using DPIV and other techniques to better understand how swimmers interact with the water. He also created a robust training tool that reports the performance of a swimmer in real-time, measuring how much energy the swimmer exerts with each kick. The tool helped several top-tier athletes trim seconds from their lap times.

Wei said he's confident that the United States will have a strong showing in skeleton next month in Vancouver, and that he's looking at ways to improve his technology to be even more effective when training swimmers to compete in the 2012 London Olympics and skeleton athletes to compete in the 2014 Winter Olympics in Sochi, Russia.

Video.


Story Source:

The above story is based on materials provided by Rensselaer Polytechnic Institute. Note: Materials may be edited for content and length.


Cite This Page:

Rensselaer Polytechnic Institute. "Science used to decode the secrets of Olympic skeleton sliding." ScienceDaily. ScienceDaily, 12 February 2010. <www.sciencedaily.com/releases/2010/02/100211141148.htm>.
Rensselaer Polytechnic Institute. (2010, February 12). Science used to decode the secrets of Olympic skeleton sliding. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2010/02/100211141148.htm
Rensselaer Polytechnic Institute. "Science used to decode the secrets of Olympic skeleton sliding." ScienceDaily. www.sciencedaily.com/releases/2010/02/100211141148.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins