Featured Research

from universities, journals, and other organizations

Compound shows promise against intractable heart failure

Date:
February 14, 2010
Source:
University of Illinois at Chicago
Summary:
A chemical compound found normally in the blood shows promise in treating and preventing an intractable form of heart failure in a mouse model of the disease.

A chemical compound found normally in the blood has shown promise in treating and preventing an intractable form of heart failure in a mouse model of the disease, report researchers at the University of Illinois at Chicago College of Medicine.

The study is published in the February issue of Circulation.

More than five and half million Americans have heart failure, according to the American Heart Association, and 670,000 new cases are diagnosed each year.

In heart failure the heart is unable to pump effectively and cannot meet the body's need for blood and oxygen. It is really two diseases, each with about half of all patients, says Dr. Samuel Dudley, professor of medicine and physiology at UIC and chair of the section of cardiology. Systolic heart failure occurs when the heart can no longer contract effectively. In diastolic heart failure, the heart is unable to relax after contraction.

"Although we have a number of treatments for systolic heart failure, there are no approved treatments at all for diastolic heart failure, a deadly disease with a 60 percent mortality rate five years after diagnosis," said Dudley.

Hypertension is the cause in the overwhelming majority of diastolic heart failure cases.

"We know from previous studies that nitric oxide (NO) is necessary for blood vessel relaxation," said Dudley, "and that hypertension can lead to a decrease of NO in blood vessels."

Dudley and his colleagues knew that -- in blood vessels -- the problem was depletion of a chemical called tetrahydrobiopterin, or BH4, which is needed for the tissues to make NO.

"We decided to try thinking of the heart as a huge blood vessel that might also be unable to make the NO it needed due to long-term hypertension, and see if adding BH4 could make a difference," said Dudley.

They found that by giving mice BH4 they were not only able to prevent diastolic heart failure from developing, but to restore function to the heart after the fact.

"We are very excited about the possibilities of developing therapies for human heart failure based on BH4," said Dudley. BH4 has already been shown to be safe in FDA trials, in a formulation currently used to treat phenylketonuria, a genetic condition.

The research was supported by National Institutes of Health grants; an American Heart Association (AHA) Established Investigator Award and Veterans Affairs Merit Grant to Dudley; and an AHA Scientist Development Award to Xiao.

Dr. Gad Silberman, Dr. Tai-Hwang Fan, Dr. Hong Liu, Dr. Zhe Jiao, Dr. Hong Xiao, Dr. Joshua Lovelock, Dr. Beth Boulden, Dr. Julian Widder, Dr. Scott Fredd, Dr. Kenneth Bernstein, Beata Wolska, Sergey Dikalov and Dr. David Harrison also contributed to the study.


Story Source:

The above story is based on materials provided by University of Illinois at Chicago. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Chicago. "Compound shows promise against intractable heart failure." ScienceDaily. ScienceDaily, 14 February 2010. <www.sciencedaily.com/releases/2010/02/100211175215.htm>.
University of Illinois at Chicago. (2010, February 14). Compound shows promise against intractable heart failure. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2010/02/100211175215.htm
University of Illinois at Chicago. "Compound shows promise against intractable heart failure." ScienceDaily. www.sciencedaily.com/releases/2010/02/100211175215.htm (accessed August 27, 2014).

Share This




More Health & Medicine News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mini Pacemaker Has No Wires

Mini Pacemaker Has No Wires

Ivanhoe (Aug. 27, 2014) Cardiac experts are testing a new experimental device designed to eliminate major surgery and still keep the heart on track. Video provided by Ivanhoe
Powered by NewsLook.com
After Cancer: Rebuilding Breasts With Fat

After Cancer: Rebuilding Breasts With Fat

Ivanhoe (Aug. 27, 2014) More than 269 million women are diagnosed with breast cancer each year. Many of them will need surgery and radiation, but there’s a new simple way to reconstruct tissue using a patient’s own fat. Video provided by Ivanhoe
Powered by NewsLook.com
Blood Clots in Kids

Blood Clots in Kids

Ivanhoe (Aug. 27, 2014) Every year, up to 200,000 Americans die from a blood clot that travels to their lungs. You’ve heard about clots in adults, but new research shows kids can get them too. Video provided by Ivanhoe
Powered by NewsLook.com
Radio Waves Knock out Knee Pain

Radio Waves Knock out Knee Pain

Ivanhoe (Aug. 27, 2014) Doctors have used radio frequency ablation or RFA to reduce neck and back pain for years. But now, that same technique is providing longer-term relief for patients with severe knee pain. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins