Featured Research

from universities, journals, and other organizations

Hangover-free booze? Increasing dissolved oxygen concentrations in alcohol may reduce negative side effects

Date:
March 2, 2010
Source:
Alcoholism: Clinical & Experimental Research
Summary:
Oxygen for ethanol oxidation is normally supplied through breathing, the stomach, and the skin. A new study has found that increasing dissolved oxygen concentrations in alcohol may help to reduce alcohol-related side effects and accidents.

Increasing dissolved oxygen concentrations in alcohol may help to reduce alcohol-related side effects and accidents, new research has found.
Credit: iStockphoto/Brent Holland

Oxygen for ethanol oxidation is supplied through breathing, the stomach, and the skin. There is a great deal of genetic and environmental variability in the pharmacokinetics of alcohol absorption, distribution, metabolism, and elimination. A new study has found that increasing dissolved oxygen concentrations in alcohol may help to reduce alcohol-related side effects and accidents.

Results will be published in the May 2010 issue of Alcoholism: Clinical & Experimental Research and are currently available at Early View.

"Ethanol is oxidized to acetaldehyde, then further oxidized to water and carbon dioxide in the body after consumption," explained Kwang-il Kwon, a professor in the college of pharmacy at Chungnam National University and corresponding author for the study. "These oxidation reactions occur primarily via hepatic oxidation and are governed by the catalytic properties of alcohol-metabolizing enzymes, including the microsomal ethanol oxidizing system (MEOS), alcohol dehydrogenase (ADH), and aldehyde dehydrogenase (ALDH). Ethanol oxidation by ADH, ALDH, and MEOS requires oxygen, and a higher oxygen uptake increases the rate of ethanol oxidation."

"Several studies have indicated that high-oxygen water can enhance the survival ability of mice, fatigue recovery, and anoxia endurance function," added Hye Gwang Jeong, a professor in the department of toxicology in the college of pharmacy at Chungnam National University. "It can also increase energy storage. However, the influence of dissolved oxygen concentration on alcohol pharmacokinetics has not previously been described. This manuscript is the first to investigate the influence of dissolved oxygen concentrations on the pharmacokinetics of alcohol in healthy human subjects."

Kwon and his colleagues performed three experiments with 49 healthy volunteers (30 men, 19 women), with a mean age of 27.2 years. Experiment one compared 8 ppm and 20 ppm dissolved oxygen concentrations in 240 ml of 19.5 percent alcoholic beverage. Experiment two compared 8 ppm and 20 ppm dissolved oxygen concentrations in 360 ml of 19.5 percent alcoholic beverage. Experiment three compared 8 ppm and 25 ppm dissolved oxygen concentrations in 360 ml of 19.5 percent alcoholic beverage.

Results showed that elevated, dissolved oxygen concentrations in alcoholic drinks can accelerate the metabolism and elimination of alcohol. For example, the time to reach 0.000 percent blood alcohol concentration (BAC) for the 240 ml of 19.5 percent alcoholic beverage with 20 ppm dissolved oxygen concentration was 20.0 min faster than with 8 ppm (257.7 min). The time to reach 0.000 percent BAC for the 360 ml of 19.5 percent alcoholic beverage with 20 ppm (334.5 min) and 25 ppm (342.1 min) dissolved oxygen concentration was 23.3 min and 27.1 min faster than with 8 ppm, respectively.

"The oxygen-enriched alcohol beverage reduces plasma alcohol concentrations faster than a normal dissolved-oxygen alcohol beverage does," said Kwon. "This could provide both clinical and real-life significance. The oxygen-enriched alcohol beverage would allow individuals to become sober faster, and reduce the side effects of acetaldehyde without a significant difference in alcohol's effects. Furthermore, the reduced time to a lower BAC may reduce alcohol-related accidents."

Both Kwon and Jeong noted that alcoholic drinks with a higher oxygen concentration already exist in Korea, but they lack scientific support. "It seems that these drinks can maintain a high dissolved-oxygen concentration for about 10 to 20 days before the stopper is removed, and for 70 minutes after removing the stopper, respectively, at room temperature," said Kwon. Both scientists suggested that future studies look closer at dissolved-oxygen concentrations on specific enzymes of alcohol metabolism, such as ADH, ALDH, and MEOS.


Story Source:

The above story is based on materials provided by Alcoholism: Clinical & Experimental Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. Baek et al. Influence of Dissolved Oxygen Concentration on the Pharmacokinetics of Alcohol in Humans. Alcoholism Clinical and Experimental Research, 2010; DOI: 10.1111/j.1530-0277.2010.01155.x

Cite This Page:

Alcoholism: Clinical & Experimental Research. "Hangover-free booze? Increasing dissolved oxygen concentrations in alcohol may reduce negative side effects." ScienceDaily. ScienceDaily, 2 March 2010. <www.sciencedaily.com/releases/2010/03/100301165604.htm>.
Alcoholism: Clinical & Experimental Research. (2010, March 2). Hangover-free booze? Increasing dissolved oxygen concentrations in alcohol may reduce negative side effects. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2010/03/100301165604.htm
Alcoholism: Clinical & Experimental Research. "Hangover-free booze? Increasing dissolved oxygen concentrations in alcohol may reduce negative side effects." ScienceDaily. www.sciencedaily.com/releases/2010/03/100301165604.htm (accessed July 31, 2014).

Share This




More Mind & Brain News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dieting At A Young Age Might Lead To Harmful Health Habits

Dieting At A Young Age Might Lead To Harmful Health Habits

Newsy (July 30, 2014) Researchers say women who diet at a young age are at greater risk of developing harmful health habits, including eating disorders and alcohol abuse. Video provided by Newsy
Powered by NewsLook.com
It's Not Just Facebook: OKCupid Experiments With Users Too

It's Not Just Facebook: OKCupid Experiments With Users Too

Newsy (July 29, 2014) If you've been looking for love online, there's a chance somebody has been looking at how you're looking. Video provided by Newsy
Powered by NewsLook.com
How Your Face Can Leave A Good Or Bad First Impression

How Your Face Can Leave A Good Or Bad First Impression

Newsy (July 29, 2014) Researchers have found certain facial features can make us seem more attractive or trustworthy. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins