Featured Research

from universities, journals, and other organizations

New device for ultrafast optical communications

Date:
March 2, 2010
Source:
University of California - Davis
Summary:
A new device invented by engineers in California could make it much faster to convert pulses of light into electronic signals and back again. The technology could be applied to ultrafast, high-capacity communications, imaging of the Earth's surface and for encrypting secure messages.

This optical chip can convert light pulses into digital signals faster and more efficiently than existing technology.
Credit: Ryan Scott, UC Davis photo

A new device invented by engineers at UC Davis could make it much faster to convert pulses of light into electronic signals and back again. The technology could be applied to ultrafast, high-capacity communications, imaging of the Earth's surface and for encrypting secure messages.

"We have found a way to measure a very high capacity waveform with a combination of standard electronics and optics," said S.J. Ben Yoo, professor of electrical and computer engineering at UC Davis. A paper describing the technology was published Feb. 28 in the journal Nature Photonics.

The device is up to 10,000 times faster than existing technologies for measuring light pulses, Yoo said. It overcomes the limitations of existing approaches, by measuring both the amplitude (intensity) and the phase of a pulse at the same time, and can measure information capacity into the 100 terahertz range in real time. Current electronics are limited to information capacity in tens of gigahertz bandwidth.

Higher-frequency pulses can pack more information into a given length of time. By making it possible to take a complex waveform and quickly decode it into a digital electronic signal, the device would make it possible to pack more data into optical signals.

Operated in reverse, the same kind of device could be used to generate optical signals from electronics.

The device -- developed by Yoo's UC Davis research group, including graduate student Nicolas Fontaine; postdoctoral researchers Ryan Scott, Linjie Zhou and Francisco Soares; and Professor Jonathan Heritage -- divides the incoming signal into slices of frequency spectrum, processes the slices in parallel and then integrates them.

The technology could be used in ultra-high-speed communications and also in LiDAR (light detection and ranging) systems. LiDAR uses pulses of laser light to rapidly scan the landscape and produce highly detailed, three-dimensional images of the Earth's surface.

The next step is to work on putting the whole device into a small silicon chip, Yoo said.

The work is funded by grants from the U.S. Defense Advanced Research Projects Agency.


Story Source:

The above story is based on materials provided by University of California - Davis. Note: Materials may be edited for content and length.


Journal Reference:

  1. Nicolas K. Fontaine, Ryan P. Scott, Linjie Zhou, Francisco M. Soares, J. P. Heritage & S. J. B. Yoo. Real-time full-field arbitrary optical waveform measurement. Nature Photonics, 2010; DOI: 10.1038/nphoton.2010.28

Cite This Page:

University of California - Davis. "New device for ultrafast optical communications." ScienceDaily. ScienceDaily, 2 March 2010. <www.sciencedaily.com/releases/2010/03/100301165744.htm>.
University of California - Davis. (2010, March 2). New device for ultrafast optical communications. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2010/03/100301165744.htm
University of California - Davis. "New device for ultrafast optical communications." ScienceDaily. www.sciencedaily.com/releases/2010/03/100301165744.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Boeing Ups Outlook on 52% Profit Jump

Boeing Ups Outlook on 52% Profit Jump

Reuters - Business Video Online (July 23, 2014) Commercial aircraft deliveries rose seven percent at Boeing, prompting the aerospace company to boost full-year profit guidance- though quarterly revenues missed analyst estimates. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Car Market on the Rebound?

Europe's Car Market on the Rebound?

Reuters - Business Video Online (July 23, 2014) Daimler kicks off a round of second-quarter earnings results from Europe's top carmakers with a healthy set of numbers - prompting hopes that stronger sales in Europe will counter weakness in emerging markets. Hayley Platt reports. Video provided by Reuters
Powered by NewsLook.com
9/11 Commission Members Warn of Terror "fatigue" Among American Public

9/11 Commission Members Warn of Terror "fatigue" Among American Public

Reuters - US Online Video (July 22, 2014) Ten years after releasing its initial report, members of the 9/11 Commission warn of the "waning sense of urgency" in combating terrorists attacks. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins