Featured Research

from universities, journals, and other organizations

Mathematical model may offer better understanding of embryonic development

Date:
March 9, 2010
Source:
Purdue University
Summary:
A mathematical model can predict complex signaling patterns that could help scientists determine how stem cells in an embryo later become specific tissues, knowledge that could be used to understand and treat developmental disorders and some diseases.

A mathematical model developed at Purdue University can predict complex signaling patterns that could help scientists determine how stem cells in an embryo later become specific tissues, knowledge that could be used to understand and treat developmental disorders and some diseases.

During embryonic development, proteins attach to cell receptors and start a cascade of reactions. Understanding those reactions is difficult, however, because feedback signals go back out to the proteins or other molecules along the cascade, constantly changing the reaction pattern. The outcomes of those reactions and the feedback mechanisms -- or inputs -- are known because they can be observed, but how the inputs lead to the outputs isn't understood.

"We want to understand how stem cells become tissue-specific so that we can manipulate that process to create cells that could be used to treat injuries and diseases," said David Umulis, a Purdue assistant professor of agricultural and biological engineering. "Using a model approach, we can simulate these complex signaling patterns to get a better handle on the process."

Umulis created a model that predicted accurate outcomes when different feedback mechanisms were inserted. His results were published in the current issue of the journal Developmental Cell.

"Fruit fly embryos are a fantastic system to peer into early development since input/output relationships are easy to observe. You have a mutation and an output, but we don't typically know what happens in the middle," he said. "Realistic model embryos proved an additional tool that can be used to aid in that understanding. Models can link that cause and effect."

The study looked at fruit fly, or drosophila, embryos during very early development to decipher what controls the differentiation of these stem cells at their proper locations. During the process, cells take on identities that later specify tissue types in the adult organism. Before directional cues dictate development, the stem cells are capable of becoming many different tissues. Using models to analyze the dynamic signals the cells are receiving may help to better understand how to control similar cells in a laboratory setting.

Umulis said his model is a sort of template to allow researchers to test a number of hypotheses before conducting actual experiments. The information garnered from realistic 3-D models can guide the process and facilitate rapid discovery.

Umulis' next step is to count the number of molecules needed to initiate specific cell responses during embryonic development. The National Institutes of Health and Purdue University funded his work.


Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.


Journal Reference:

  1. David M. Umulis, Osamu Shimmi, Michael B. O'Connor and Hans G. Othmer. Organism-Scale Modeling of Early Drosophila Patterning via Bone Morphogenetic Proteins. Developmental Cell, 2010; 18 (2): 260 DOI: 10.1016/j.devcel.2010.01.006

Cite This Page:

Purdue University. "Mathematical model may offer better understanding of embryonic development." ScienceDaily. ScienceDaily, 9 March 2010. <www.sciencedaily.com/releases/2010/03/100309121546.htm>.
Purdue University. (2010, March 9). Mathematical model may offer better understanding of embryonic development. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2010/03/100309121546.htm
Purdue University. "Mathematical model may offer better understanding of embryonic development." ScienceDaily. www.sciencedaily.com/releases/2010/03/100309121546.htm (accessed August 23, 2014).

Share This




More Plants & Animals News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Endangered Red Wolves Face Uncertain Future

Endangered Red Wolves Face Uncertain Future

AP (Aug. 22, 2014) A federal judge temporarily banned coyote hunting to save endangered red wolves, but local hunters say that the wolf preservation program does more harm than good. Meanwhile federal officials are reviewing its wolf program in North Carolina. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Farm Resurgence Grows With Younger Crowd

Farm Resurgence Grows With Younger Crowd

AP (Aug. 22, 2014) New England farms are seeing a surge in younger farm hands as the 'buy local' food movement grows across the country. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins