Featured Research

from universities, journals, and other organizations

Dangerous custodians: Immune cells as possible nerve-cell killers in Alzheimer’s disease

Date:
March 30, 2010
Source:
Ludwig-Maximilians-Universitaet Muenchen (LMU)
Summary:
Progressive dementia of Alzheimer’s patients is due to an inexorable loss of nerve cells from the brain. Neuroscientists have now shown that microglia may actually make a significant contribution to the loss of neurons associated with Alzheimer’s disease.

Microglia are the cells responsible for immune surveillance in the brain, and they initiate protective inflammatory reactions in response to tissue damage and infection. An international team under the leadership of LMU neuroscientist Professor Jochen Herms has now shown that these cells may actually make a significant contribution to the loss of neurons associated with Alzheimer's disease.

Related Articles


About 1.2 million people are thought to suffer from this form of progressive dementia in Germany, and this figure is expected to double as the average age of the population continues to increase. Their new findings lead Professor Herms and his team to believe that, as the disease develops, stressed nerve cells secrete a chemical messenger that attracts microglia. The ensuing inflammatory reactions ultimately result in the elimination of the neurons.

This implies that chemical signalling between nerve cells and microglia plays an important role in mediating neuron loss during the course of the disease. "We may be able to make use of these results to develop novel agents that can slow the rate of neuron loss by interrupting communications between the two cell types," says Herms. It is estimated that as many as 18 million people currently suffer from Alzheimer's disease worldwide, and the numbers are rising. This form of progressive dementia is due to an inexorable loss of nerve cells from the brain that is associated with the formation of insoluble protein aggregates, called beta-amyloid plaques and tangles.

Large numbers of microglia gather in the vicinity of these plaques. Microglia serve as immune "policemen" that use their long processes to monitor their surroundings for signs of tissue damage. In accordance with this role, it has been thought that they congregate near plaques in order to degrade them.

Using two-photon microscopy, Professor Herms and his colleagues at the LMU's Center for Neuropathology were able to look directly into the brains of genetically modified mice that develop many of the symptoms characteristic of Alzheimer's disease in humans. The mice had also been engineered to make fluorescent forms of proteins that are specific for neurons and microglia, and the imaging technique enabled the researchers to monitor the fate of identifiable neurons and microglia over periods of weeks and months.

This approach made it possible, for the first time, to visualize the loss of nerve cells in the brains of living mice. Nerve loss was found to be preceded by the activation of microglia.

"We assume that the sick nerve cells near plaques secrete a chemical messenger that induces the microglia to home in on them," says Herms. "The best candidate for the messenger responsible is the chemokine fractalikine, which docks onto a receptor protein on the surface of the microglial cells."

Indeed, when this receptor was genetically eliminated, nerve cell loss was prevented. These results demonstrate that microglia are not only involved in the removal of the amyloid aggregates typical of Alzheimer's disease, they also contribute actively to the catastrophic loss of nerve cells. In this picture, the communication channel between nerve cell and microglia that is mediated by the fractalkine receptor plays a crucial role in the pathology of Alzheimer's disease.

"The new findings could possibly lead to new therapeutic approaches to preventing neuron loss," says Herms.


Story Source:

The above story is based on materials provided by Ludwig-Maximilians-Universitaet Muenchen (LMU). Note: Materials may be edited for content and length.


Journal Reference:

  1. Fuhrmann et al. Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer's disease. Nature Neuroscience, 2010; DOI: 10.1038/nn.2511

Cite This Page:

Ludwig-Maximilians-Universitaet Muenchen (LMU). "Dangerous custodians: Immune cells as possible nerve-cell killers in Alzheimer’s disease." ScienceDaily. ScienceDaily, 30 March 2010. <www.sciencedaily.com/releases/2010/03/100322083855.htm>.
Ludwig-Maximilians-Universitaet Muenchen (LMU). (2010, March 30). Dangerous custodians: Immune cells as possible nerve-cell killers in Alzheimer’s disease. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2010/03/100322083855.htm
Ludwig-Maximilians-Universitaet Muenchen (LMU). "Dangerous custodians: Immune cells as possible nerve-cell killers in Alzheimer’s disease." ScienceDaily. www.sciencedaily.com/releases/2010/03/100322083855.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com
You Don't Have To Be Alcohol Dependent To Need Treatment

You Don't Have To Be Alcohol Dependent To Need Treatment

Newsy (Nov. 21, 2014) A study by the Centers for Disease Control and Prevention found 9 out of 10 excessive drinkers in the country are not alcohol dependent. Video provided by Newsy
Powered by NewsLook.com
Your Complicated Job Might Keep Your Brain Young

Your Complicated Job Might Keep Your Brain Young

Newsy (Nov. 20, 2014) Researchers at the University of Edinburgh found the more complex your job is, the sharper your cognitive skills will likely be as you age. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins