Featured Research

from universities, journals, and other organizations

Astronomers confirm Einstein's theory of relativity and accelerating cosmic expansion

Date:
March 25, 2010
Source:
ESA/Hubble Information Centre
Summary:
An international team of astronomers has confirmed that the expansion of the universe is accelerating after looking at data from the largest-ever survey conducted by the Hubble Space Telescope. The researchers have, for the first time ever, used Hubble data to probe the effects of the natural gravitational "weak lenses" in space and characterize the expansion of the universe.

This image shows a smoothed reconstruction of the total (mostly dark) matter distribution in the COSMOS field, created from data taken by the NASA/ESA Hubble Space Telescope and ground-based telescopes. It was inferred from the weak gravitational lensing distortions that are imprinted onto the shapes of background galaxies. The color coding indicates the distance of the foreground mass concentrations as gathered from the weak lensing effect. Structures shown in white, cyan and green are typically closer to us than those indicated in orange and red. To improve the resolution of the map, data from galaxies both with and without redshift information were used. The new study presents the most comprehensive analysis of data from the COSMOS survey. The researchers have, for the first time ever, used Hubble and the natural "weak lenses" in space to characterise the accelerated expansion of the universe.
Credit: NASA, ESA, P. Simon (University of Bonn) and T. Schrabback (Leiden Observatory)

A group of astronomers [1], led by Tim Schrabback of the Leiden Observatory, conducted an intensive study of over 446 000 galaxies within the COSMOS field, the result of the largest survey ever conducted with Hubble. In making the COSMOS survey, Hubble photographed 575 slightly overlapping views of the same part of the Universe using the Advanced Camera for Surveys (ACS) onboard Hubble. It took nearly 1000 hours of observations.

Related Articles


In addition to the Hubble data, researchers used redshift [2] data from ground-based telescopes to assign distances to 194 000 of the galaxies surveyed (out to a redshift of 5). "The sheer number of galaxies included in this type of analysis is unprecedented, but more important is the wealth of information we could obtain about the invisible structures in the Universe from this exceptional dataset," says co-author Patrick Simon from Edinburgh University.

In particular, the astronomers could "weigh" the large-scale matter distribution in space over large distances. To do this, they made use of the fact that this information is encoded in the distorted shapes of distant galaxies, a phenomenon referred to as weak gravitational lensing [3]. Using complex algorithms, the team led by Schrabback has improved the standard method and obtained galaxy shape measurements to an unprecedented precision. The results of the study will be published in an upcoming issue of Astronomy and Astrophysics.

The meticulousness and scale of this study enables an independent confirmation that the expansion of the Universe is accelerated by an additional, mysterious component named dark energy. A handful of other such independent confirmations exist. Scientists need to know how the formation of clumps of matter evolved in the history of the Universe to determine how the gravitational force, which holds matter together, and dark energy, which pulls it apart by accelerating the expansion of the Universe, have affected them. "Dark energy affects our measurements for two reasons. First, when it is present, galaxy clusters grow more slowly, and secondly, it changes the way the Universe expands, leading to more distant -- and more efficiently lensed -- galaxies. Our analysis is sensitive to both effects," says co-author Benjamin Joachimi from the University of Bonn. "Our study also provides an additional confirmation for Einstein's theory of general relativity, which predicts how the lensing signal depends on redshift," adds co-investigator Martin Kilbinger from the Institut d'Astrophysique de Paris and the Excellence Cluster Universe.

The large number of galaxies included in this study, along with information on their redshifts is leading to a clearer map of how, exactly, part of the Universe is laid out; it helps us see its galactic inhabitants and how they are distributed. "With more accurate information about the distances to the galaxies, we can measure the distribution of the matter between them and us more accurately," notes co-investigator Jan Hartlap from the University of Bonn. "Before, most of the studies were done in 2D, like taking a chest X-ray. Our study is more like a 3D reconstruction of the skeleton from a CT scan. On top of that, we are able to watch the skeleton of dark matter mature from the Universe's youth to the present," comments William High from Harvard University, another co-author.

The astronomers specifically chose the COSMOS survey because it is thought to be a representative sample of the Universe. With thorough studies such as the one led by Schrabback, astronomers will one day be able to apply their technique to wider areas of the sky, forming a clearer picture of what is truly out there.

Notes:

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

[1] The international team of astronomers in this study was led by Tim Schrabback of the Leiden University. Other collaborators included: J. Hartlap (University of Bonn), B. Joachimi (University of Bonn), M. Kilbinger (IAP), P. Simon (University of Edinburgh), K. Benabed (IAP), M. Bradac (UCDavis), T. Eifler (University of Bonn), T. Erben (University of Bonn), C. Fassnacht (University of California, Davis), F. W. High(Harvard), S. Hilbert (MPA), H. Hildebrandt (Leiden Observatory), H. Hoekstra (Leiden Observatory), K. Kuijken (Leiden Observatory), P. Marshall (KIPAC), Y. Mellier (IAP), E. Morganson (KIPAC), P. Schneider (University of Bonn), E. Semboloni (University of Bonn), L. Van Waerbeke (UBC) and M. Velander (Leiden Observatory).

[2] In astronomy, the redshift denotes the fraction by which the lines in the spectrum of an object are shifted towards longer wavelengths due to the expansion of the Universe. The observed redshift of a remote galaxy provides an estimate of its distance. In this study the researchers used redshift information computed by the COSMOS team (http://ukads.nottingham.ac.uk/abs/2009ApJ...690.1236I) using data from the SUBARU, CFHT, UKIRT, Spitzer, GALEX, NOAO, VLT, and Keck telescopes.

[3] Weak gravitational lensing: The phenomenon of gravitational lensing is the warping of spacetime by the gravitational field of a concentration of matter, such as a galaxy cluster. When light rays from distant background galaxies pass this matter concentration, their path is bent and the galaxy images are distorted. In the case of weak lensing, these distortions are small, and must be measured statistically. This analysis provides a direct estimate for the strength of the gravitational field, and therefore the mass of the matter concentration. When determining precise shapes of galaxies, astronomers have to deal with three main factors: the intrinsic shape of the galaxy (which is unknown), the gravitational lensing effect they want to measure, and systematic effects caused by the telescope and camera, as well as the atmosphere, in case of ground-based observations.


Story Source:

The above story is based on materials provided by ESA/Hubble Information Centre. Note: Materials may be edited for content and length.


Journal Reference:

  1. Schrabback et al. Evidence for the accelerated expansion of the Universe from weak lensing tomography with COSMOS. Astronomy & Astrophysics, 2010;

Cite This Page:

ESA/Hubble Information Centre. "Astronomers confirm Einstein's theory of relativity and accelerating cosmic expansion." ScienceDaily. ScienceDaily, 25 March 2010. <www.sciencedaily.com/releases/2010/03/100325091430.htm>.
ESA/Hubble Information Centre. (2010, March 25). Astronomers confirm Einstein's theory of relativity and accelerating cosmic expansion. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2010/03/100325091430.htm
ESA/Hubble Information Centre. "Astronomers confirm Einstein's theory of relativity and accelerating cosmic expansion." ScienceDaily. www.sciencedaily.com/releases/2010/03/100325091430.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Space & Time News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Scientists Find Invisible Space Shield Protecting Earth

Scientists Find Invisible Space Shield Protecting Earth

Newsy (Nov. 27, 2014) An invisible barrier is keeping dangerous super fast electrons from interfering with our atmosphere, but scientists aren't entirely sure how. Video provided by Newsy
Powered by NewsLook.com
NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Feast Your Eyes: Lamb Chop Sent Into Space from UK

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Reuters - Light News Video Online (Nov. 25, 2014) Take a stab at this -- stunt video shows a lamb chop's journey from an east London restaurant over 30 kilometers into space. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Soyuz Spacecraft Docks With International Space Station: NASA

Soyuz Spacecraft Docks With International Space Station: NASA

AFP (Nov. 24, 2014) A Russian Soyuz spacecraft carrying Italy's first female astronaut safely docks with the International Space Station, according to NASA. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins