Featured Research

from universities, journals, and other organizations

Advances reported in quest for drugs targeting childhood cancer

Date:
April 1, 2010
Source:
St. Jude Children's Research Hospital
Summary:
Investigators believe they have identified the founding member of a chemical family they hope will lead to a new class of cancer drugs, the first designed specifically against a childhood tumor.

St. Jude Children's Research Hospital investigators recently identified the first small molecule inhibitor of the MDMX protein, which is implicated in a number of cancers. This illustration shows the inhibitor's predicted binding in a pocket of the MDMX protein.
Credit: Jennifer Robison, St. Jude Biomedical Communications

Investigators believe they have identified the founding member of a chemical family they hope will lead to a new class of cancer drugs, the first designed specifically against a childhood tumor, according to research led by St. Jude Children's Research Hospital scientists.

The chemical is the first small-molecule inhibitor to target the MDMX protein. Excess MDMX is a hallmark of the childhood eye tumor retinoblastoma as well as certain cases of breast, lung, prostate and other cancers. Nationally about 300 new cases of retinoblastoma are identified each year.

The discovery was reported online in advance of the April 2 print edition of the Journal of Biological Chemistry. An overabundance of MDMX or its sister protein, MDM2, can promote tumor progression by binding and suppressing a protein called p53. The role of p53 in normal cells is to induce death in cells that begin the unchecked cell division that is a hallmark of cancer.

MDM2 and MDMX use different mechanisms to disrupt the p53 pathway. There is an emerging scientific consensus that restoring normal p53 function might require shutting down both MDMX and MDM2. A small-molecule inhibitor against MDM2 is already in Phase 1 pharmaceutical industry trials. In this study, St. Jude researchers reported that when the new St. Jude compound, known as SJ-172550, is combined with an MDM2 inhibitor there was a corresponding increase in retinoblastoma cells death.

Michael Dyer, Ph.D., Developmental Neurobiology and the paper's senior author, said several years of detailed chemical studies and additional work are likely needed before SJ-172550 might be ready for human trials.

Evidence suggests SJ-172550 works by binding in a reversible manner to a pocket in the MDMX molecule. With SJ-172550 sitting in the pocket, the p53 protein cannot bind to MDMX, Dyer explained. That makes p53 available to do its job and eliminate tumor cells. About 65 percent of retinoblastoma tumors feature extra copies of the MDMX gene as do nearly 20 percent of patients with breast, colon and lung cancer.

The finding expands on work from Dyer's laboratory into the genetic and biochemical missteps that give rise to retinoblastoma. The advance reflects the combined efforts of the St. Jude departments of Developmental Neurobiology; Chemical Biology and Therapeutics; and Structural Biology. The first authors are Damon Reed, M.D., formerly of St. Jude and now of St. Petersburg, Fla., and Ying Shen, Ph.D., of Developmental Neurobiology.

"We went from a discovery in childhood cancer, MDMX amplification, to characterizing this first inhibitor in about three-and one-half years," Dyer said. "This model is now being replicated over and over in other cancers we treat at St. Jude."

Dyer's laboratory developed the biochemical and cell-based tests used by colleagues in Chemical Biology and Therapeutics. Researchers checked a chemical library of nearly 300,000 compounds using high-throughput screening. Investigators searched for molecules likely to block MDMX activity.

Dyer said the new compound might help researchers studying the biology of MDMX. "It may also be useful for any tumor that has normal p53," he said. "The idea is that if you have normal p53 and you need to turn it on, maybe by giving a drug that hits MDM2 and another that hits MDMX; you free p53 up to kill the cell."

Investigators' predictions of exactly how SJ-172550 interacts with MDMX are based on mathematical and computer models. Work is underway to capture an X-ray crystal structure of SJ-172550 bound to MDMX.

Other St. Jude authors are Anang Shelat, Fangyi Zhu, David Smithson, Kip Guy, Samantha Cicero, Antonio Ferreira, Donald Bashford, and Brenda Schulman (St. Jude); Leggy A. Arnold, Catherine A. Regni and Nicholas Mills (formerly of St. Jude); and Aart Jochemsen (Leiden University Medical Center, Leiden, Netherlands).

The research was supported by grants from the National Institutes of Health, the National Cancer Institute, the American Cancer Society, Research to Prevent Blindness, the Pearle Vision Foundation, the International Retinal Research Foundation, the Pew Charitable Trust, Howard Hughes Medical Institute and ALSAC.


Story Source:

The above story is based on materials provided by St. Jude Children's Research Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. Reed, Y. Shen, A. A. Shelat, L. A. Arnold, A. M. Ferreira, F. Zhu, N. Mills, D. C. Smithson, C. A. Regni, D. Bashford, S. A. Cicero, B. A. Schulman, A. G. Jochemsen, R. K. Guy, M. A. Dyer. Identification and Characterization of the First Small Molecule Inhibitor of MDMX. Journal of Biological Chemistry, 2010; 285 (14): 10786 DOI: 10.1074/jbc.M109.056747

Cite This Page:

St. Jude Children's Research Hospital. "Advances reported in quest for drugs targeting childhood cancer." ScienceDaily. ScienceDaily, 1 April 2010. <www.sciencedaily.com/releases/2010/03/100329112155.htm>.
St. Jude Children's Research Hospital. (2010, April 1). Advances reported in quest for drugs targeting childhood cancer. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2010/03/100329112155.htm
St. Jude Children's Research Hospital. "Advances reported in quest for drugs targeting childhood cancer." ScienceDaily. www.sciencedaily.com/releases/2010/03/100329112155.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com
What's To Blame For Worst Ebola Outbreak In History?

What's To Blame For Worst Ebola Outbreak In History?

Newsy (July 27, 2014) A U.S. doctor has tested positive for the deadly Ebola virus, as the worst-ever outbreak continues to grow. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins