Featured Research

from universities, journals, and other organizations

From a classical laser to a 'quantum laser'

Date:
March 31, 2010
Source:
University of Innsbruck
Summary:
Researchers in Austria have successfully realized a single-atom laser, which shows the properties of a classical laser as well as quantum mechanical properties of the atom-photon interaction.

A high-finesse optical cavity consists of two mirrors, which traps and accumulates the photons emitted by the ion into a mode. The ion is excited cyclically by an external laser and at each cycle a photon is added to the cavity mode, which amplifies the light.
Credit: Piet Schmidt

Rainer Blatt's and Piet Schmidt's research team from the University of Innsbruck has successfully realized a single-atom laser, which shows the properties of a classical laser as well as quantum mechanical properties of the atom-photon interaction.

The scientists have published their findings in the journal Nature Physics.

The first laser was developed 50 years ago. Today we cannot imagine life without the artificially produced light waves -- lasers have become an integral part of many appliances used in telecommunication, household, medicine, and research.

A laser normally consists of a gain medium, which is electrically or optically pumped, inside a highly reflective optical cavity (or resonator). The light in the cavity bounces back and forth in the form of modes whereby it is amplified repeatedly. One of the distinctive features of a classical laser is the steep increase of output power when a certain pumping threshold is reached. At this point the gain (amplification by the medium) equals the losses as the light circulates through the cavity. This is caused by the amplification of the interaction between light and atoms: The more photons are present in a mode the stronger the amplification of the light in the mode. This stimulated emission is usually observed in macroscopic lasers comprising of many atoms and photons.

The Innsbruck researchers have demonstrated that a laser threshold can be achieved at the smallest possible building block of a laser: a single atom, which interacts with a single mode in an optical cavity. A single calcium ion is confined in an ion trap and excited by external lasers. A high-finesse optical cavity consists of two mirrors, which traps and accumulates the photons emitted by the ion into a mode. The ion is excited cyclically by an external laser and at each cycle a photon is added to the cavity mode, which amplifies the light.

For strong atom-cavity coupling the regime of atom and cavity shows quantum mechanical behavior: Only single photons can be introduced into the cavity. "As a consequence, stimulated emission and threshold are absent," explains Franηois Dubin, a French postdoc and first author of the publication. A 'quantum laser' was demonstrated in a similar regime some years ago. What is new in the experiment of the Innsbruck researchers is the ability to tune the coupling of the atom to the cavity mode. By choosing the right parameter of the drive laser, the physicists were able to achieve stronger excitation and, consequently, add more photons to the cavity. Although there was still less than one photon in the cavity, the researchers observed stimulated emission in the form of a threshold.

"A single atom is a very weak amplifier. As a consequence, the threshold is much less pronounced than in classical lasers," explains Piet Schmidt.

An even stronger excitation does not result in a higher output, which is the case in a conventional laser, but in the quenching of the output due to quantum mechanical interference. This constitutes an intrinsic limitation of miniature single-atom lasers. Therefore, researchers from the University of Innsbruck want to further investigate the transition between quantum and classical lasers through the controlled addition of more and more ions interacting with the light field.

This research work is supported by the Austrian Science Fund, the European Commission and the Federation of Austrian Industry Tirol.


Story Source:

The above story is based on materials provided by University of Innsbruck. Note: Materials may be edited for content and length.


Journal Reference:

  1. Franηois Dubin, Carlos Russo, Helena G. Barros, Andreas Stute, Christoph Becher, Piet O. Schmidt, Rainer Blatt. Quantum to classical transition in a single-ion laser. Nature Physics, 2010; DOI: 10.1038/nphys1627

Cite This Page:

University of Innsbruck. "From a classical laser to a 'quantum laser'." ScienceDaily. ScienceDaily, 31 March 2010. <www.sciencedaily.com/releases/2010/03/100331081129.htm>.
University of Innsbruck. (2010, March 31). From a classical laser to a 'quantum laser'. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2010/03/100331081129.htm
University of Innsbruck. "From a classical laser to a 'quantum laser'." ScienceDaily. www.sciencedaily.com/releases/2010/03/100331081129.htm (accessed April 24, 2014).

Share This



More Matter & Energy News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) — The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Air Force: $4.2B Saved from Grounding A-10s

Air Force: $4.2B Saved from Grounding A-10s

AP (Apr. 23, 2014) — Speaking about the future of the United States Air Force, Chief of Staff Gen. Mark Welsh says the choice to divest the A-10 fleet was logical and least impactful. (April 23) Video provided by AP
Powered by NewsLook.com
Jets Fuel Jump in Boeing's Revenue

Jets Fuel Jump in Boeing's Revenue

Reuters - Business Video Online (Apr. 23, 2014) — A sharp rise in revenue for commercial jets offset a decline in Boeing's defense business. And a big increase in deliveries lifted profitability. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) — South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins