Featured Research

from universities, journals, and other organizations

New models for optimizing mission control of unmanned aerial vehicles

Date:
April 1, 2010
Source:
Air Force Office of Scientific Research
Summary:
Engineers are working on a theoretical approach to improve automated mission control and decision-making for fleets of unmanned aerial vehicles.

Engineers at Boston University are working on a theoretical approach to improve automated mission control and decision-making for fleets of unmanned aerial vehicles.

While unmanned systems currently rely on the automation of low-level functions, such as navigation, stabilization and trajectory, operating these systems is still quite labor-intensive for Air Force pilots given the variable flying conditions experienced by UAVs.

The BU team, led by Dr. David Castañón and Dr. Christos Cassandras, has focused their work on optimizing "mission control," which describes mid-level control approaches that go beyond simply improving stability and tracking trajectories.

"We were interested in automating functions such as partitioning of tasks among members of teams of UAVs,...monitoring the success of the individual activities, and re-planning to accommodate contingencies or failures in executing the planned tasks," explained Castañón.

Automating these functions would let UAVs adapt their actions more rapidly in response to unforeseen events and ultimately require less human supervision.

To date, the team has developed mathematical algorithms that can make nearly optimal decisions under realistic model conditions. Their approach thus far has been based on the need to account for a number of uncertainties requiring complex computations nearly impossible to implement in real-time systems.

"Our research approach has been to exploit classes of models for which fast algorithms can be developed and to extend these algorithms to generate decisions in more complex models that capture the relevant features of the UAV problems of interest," said Castañón.

While much of Cassandras and Castañón's research is based on mathematical analysis, they have also developed a robotics test scenario for evaluating their approach. Both graduate and undergraduate students at BU are involved in this testing, which uses teams of small robots equipped with sensors to represent the UAVs. In these tests, the robots have to function in a mid-level control environment while being distracted by unforeseen events such as loss of team members, arrival of new tasks and discovery of new information.

As the BU team learns more about the environments in which UAVs operate, they will continue to hone their results, with the long-term goal of increasing the level of self-sufficiency available to future Air Force UAV fleets.

Funding was provided by the Air Force Office of Scientific Research.


Story Source:

The above story is based on materials provided by Air Force Office of Scientific Research. Note: Materials may be edited for content and length.


Cite This Page:

Air Force Office of Scientific Research. "New models for optimizing mission control of unmanned aerial vehicles." ScienceDaily. ScienceDaily, 1 April 2010. <www.sciencedaily.com/releases/2010/03/100331151138.htm>.
Air Force Office of Scientific Research. (2010, April 1). New models for optimizing mission control of unmanned aerial vehicles. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2010/03/100331151138.htm
Air Force Office of Scientific Research. "New models for optimizing mission control of unmanned aerial vehicles." ScienceDaily. www.sciencedaily.com/releases/2010/03/100331151138.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins