Featured Research

from universities, journals, and other organizations

Nanotechnologists reveal the frictional characteristics of atomically thin sheets

Date:
April 5, 2010
Source:
University of Pennsylvania
Summary:
Nanotechnology researchers have used friction force microscopy to determine the nanoscale frictional characteristics of four atomically-thin materials, discovering a universal characteristic for these very different materials. Friction across these thin sheets increases as the number of atomic layers decreases, all the way down to one layer of atoms.

Interatomic forces cause attraction between the atomic sheet and the nano-scale tip of the atomic force microscope. Thin sheets deflect toward the tip, therefore increasing friction. When the tip starts to slide, the sheet deforms further as the deformed area is partially pulled along with the tip. The color scale of the atoms indicates how far the atoms have moved upward (red) or downward (blue) from their original positions. Thicker sheets cannot deflect as easily because they are much stiffer, so the increase in friction is less pronounced, consistent with study measurements.
Credit: University of Pennsylvania and Science

A team of nanotechnology researchers from the University of Pennsylvania and Columbia University has used friction force microscopy to determine the nanoscale frictional characteristics of four atomically-thin materials, discovering a universal characteristic for these very different materials. Friction across these thin sheets increases as the number of atomic layers decreases, all the way down to one layer of atoms. This friction increase was surprising as there previously was no theory to predict this behavior.

The finding reveals a significant principle for these materials, which are widely used as solid lubricant films in critical engineering applications and are leading contenders for future nanoscale electronics.

Researchers found that friction progressively increased as the number of layers is reduced on all four materials, regardless of how different the materials may behave chemically, electronically or in bulk quantities. These measurements, supported by computer modeling, suggest that the trend arises from the fact that the thinner a material the more flexible it is, just as a single sheet of paper is much easier to bend than a thick piece of cardboard.

Robert Carpick, professor in the Department of Mechanical Engineering and Applied Mechanics at Penn, and James Hone, professor in the Department of Mechanical Engineering at Columbia, led the project collaboratively.

The team tested the nanotribological, or nano-scale frictional properties, of graphene, molybdenum disulfide (MoS2), hexagonal-BN (h-BN) and niobium diselenide (NbSe2) down to single atomic sheets. The team literally shaved off atomic-scale amounts of each material onto a silicon oxide substrate and compared their findings to the bulk counterparts. Each material exhibited the same basic frictional behavior despite having electronic properties that vary from metallic to semiconducting to insulating.

"We call this mechanism, which leads to higher friction on thinner sheets the 'puckering effect,'" Carpick said. "Interatomic forces, like the van der Waals force, cause attraction between the atomic sheet and the nanoscale tip of the atomic force microscope which measures friction at the nanometer scale."

Because the sheet is so thin -- in some samples only an atom thick -- it deflects toward the tip, making a puckered shape and increasing the area of interaction between the tip and the sheet, which increases friction. When the tip starts to slide, the sheet deforms further as the deformed area is partially pulled along with the tip, rippling the front edge of the contact area. Thicker sheets cannot deflect as easily because they are much stiffer, so the increase in friction is less pronounced.

The researchers found that the increase in friction could be prevented if the atomic sheets were strongly bound to the substrate. If the materials were deposited onto the flat, high-energy surface of mica, a naturally occurring mineral, the effect goes away. Friction remains the same regardless of the number of layers because the sheets are strongly stuck down onto the mica, and no puckering can occur.

"Nanotechnology examines how materials behave differently as they shrink to the nanometer scale," Hone said. "On a fundamental level, it is exciting to find yet another property that fundamentally changes as a material gets smaller."

The results may also have practical implications for the design of nanomechanical devices that use graphene, which is one of the strongest materials known. It may also help researchers understand the macroscopic behavior of graphite, MoS2 and BN, which are used as common lubricants to reduce friction and wear in machines and devices.

The study, published in the current edition of the journal Science, was conducted collaboratively by Carpick and Qunyang Li of the Department of Mechanical Engineering in Penn's School of Engineering and Applied Science; Hone, Changgu Lee and William Kalb of the Department of Mechanical Engineering in the Fu Foundation School of Engineering and Applied Science at Columbia; Xin-Zhou Liu of Leiden University in the Netherlands; and Helmuth Berger of Ecole Polytechnique Fιdιrale de Lausanne in Switzerland.

Research was funded by the National Science Foundation through Penn's Laboratory for Research into the Structure of Matter, Columbia's Nanoscale Science and Engineering Center, the NSF's Directorate for Engineering, the Defense Advanced Research Projects Agency, the Air Force Office of Scientific Research and the New York State Office of Science, Technology and Academic Research.


Story Source:

The above story is based on materials provided by University of Pennsylvania. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania. "Nanotechnologists reveal the frictional characteristics of atomically thin sheets." ScienceDaily. ScienceDaily, 5 April 2010. <www.sciencedaily.com/releases/2010/04/100401143117.htm>.
University of Pennsylvania. (2010, April 5). Nanotechnologists reveal the frictional characteristics of atomically thin sheets. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2010/04/100401143117.htm
University of Pennsylvania. "Nanotechnologists reveal the frictional characteristics of atomically thin sheets." ScienceDaily. www.sciencedaily.com/releases/2010/04/100401143117.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) — Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins