Featured Research

from universities, journals, and other organizations

New method to study key targets in Alzheimer's disease and prostate cancer

Date:
April 8, 2010
Source:
Institute for Research in Biomedicine (IRB Barcelona)
Summary:
When designing a drug against a disease, chemists often used detailed plans of the proteins affected and against which the drugs must act. However, about a third of the proteins of our bodies have not yet been "photographed" because they generally vary in form, are in constant movements and have very little structure.

In blue, prediction of the structure of denaturalized ubiquitin protein by previous computational models. In red, refined structures with the ERIDU model. These structures coincide with experimental data.
Credit: Copyright Salvatella lab / IRB Barcelona

When designing a drug against a disease, chemists often used detailed plans of the proteins affected and against which the drugs must act. However, about a third of the proteins of our bodies have not yet been "photographed" because they generally vary in form, are in constant movements and have very little structure. This lack of "photographs" hinders the design of drugs against diseases involving proteins that are structurally "evasive," such as those in Alzheimer's disease and in prostate cancer that does not respond to conventional drugs.

A group headed by Xavier Salvatella, ICREA researcher with the Chemistry and Molecular Pharmacology Programme at the Institute for Research in Biomedicine (IRB Barcelona), has developed a method to obtain structural information about intrinsically disordered proteins. The study appears in theJournal of the American Chemical Society.

Proteins are combinations of amino acids that fold in tri-dimensional forms that determine their function. The particularity of intrinsically disordered proteins is that because they are so dynamic and have little folded structure it is almost impossible to determine the variety of shapes that they adopt and consequently the functions they exert. Classical techniques, such as crystallography and nuclear magnetic resonance, do not work with these proteins. The researcher Xavier Salvatella, who left Cambridge to join IRB Barcelona a little over a year ago, develops methods to study the movements of proteins through combining laboratory experiments and computational predictions, an approach used by very few groups in the world. The researchers have simultaneously used a thousand processors of the supercomputer MareNostrum to study a single protein model and develop a new programme for structural calculation, named ERIDU. They then checked that the calculated structures agreed with lab data measured independently. The researchers will make ERIDU available to the international scientific community.

Objective: Alzheimer's disease and prostate cancer

With this new methodology, the group at IRB Barcelona, in collaboration with the University of Cambridge, will study why beta-amyloid plaques develop in Alzheimer's disease. They will examine the variety of forms that this protein adopts before and during accumulation. In another project, Salvatella will address the androgen receptor, the target protein in Kennedy's disease, a rare neurodegenerative disorder that causes muscular atrophy, as well in prostate cancer. "Oncologists are calling for new strategies to stop the growth of prostate tumours," explains Salvatella. The drugs currently available inhibit a part of the androgen receptor that is well known but in later stages of the disease these drugs can stop working. This protein has another important part that is intrinsically disordered and about which there is no structural information. "If our method is as reliable as we think, we could start to decipher the variety of structural forms that this other active part adopts in order to design drugs in the future."

In only ten years intrinsically disordered proteins have become one of the most interesting fields of research for biomedicine. "We have seen that the greater the complexity of the organism, the more proteins of this kind it has; however, although these proteins are highly relevant we still know very little about them because, among other things, it is very difficult to study their structures," comments Salvatella. Next October, IRB Barcelona, jointly with the BBVA Foundation, is organising a Barcelona BioMed Conference on intrinsically disordered proteins. This event will bring together experts in this field to discuss the most relevant breakthroughs made in pioneering labs worldwide.


Story Source:

The above story is based on materials provided by Institute for Research in Biomedicine (IRB Barcelona). Note: Materials may be edited for content and length.


Journal Reference:

  1. Santi Esteban-Martín, Robert Bryn Fenwick, Xavier Salvatella. Refinement of Ensembles Describing Unstructured Proteins Using NMR Residual Dipolar Couplings. Journal of the American Chemical Society, 2010; 132 (13): 4626 DOI: 10.1021/ja906995x

Cite This Page:

Institute for Research in Biomedicine (IRB Barcelona). "New method to study key targets in Alzheimer's disease and prostate cancer." ScienceDaily. ScienceDaily, 8 April 2010. <www.sciencedaily.com/releases/2010/04/100408105202.htm>.
Institute for Research in Biomedicine (IRB Barcelona). (2010, April 8). New method to study key targets in Alzheimer's disease and prostate cancer. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2010/04/100408105202.htm
Institute for Research in Biomedicine (IRB Barcelona). "New method to study key targets in Alzheimer's disease and prostate cancer." ScienceDaily. www.sciencedaily.com/releases/2010/04/100408105202.htm (accessed August 22, 2014).

Share This




More Mind & Brain News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Lost Brain Cells To Blame For Sleep Problems Among Seniors

Lost Brain Cells To Blame For Sleep Problems Among Seniors

Newsy (Aug. 21, 2014) According to a new study, elderly people might have trouble sleeping because of the loss of a certain group of neurons in the brain. Video provided by Newsy
Powered by NewsLook.com
Do More Wedding Guests Make A Happier Marriage?

Do More Wedding Guests Make A Happier Marriage?

Newsy (Aug. 20, 2014) A new study found couples who had at least 150 guests at their weddings were more likely to report being happy in their marriages. Video provided by Newsy
Powered by NewsLook.com
Charter Schools Alter Post-Katrina Landscape

Charter Schools Alter Post-Katrina Landscape

AP (Aug. 20, 2014) Nine years after Hurricane Katrina, charter schools are the new reality of public education in New Orleans. The state of Louisiana took over most of the city's public schools after the killer storm in 2005. (Aug. 20) Video provided by AP
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins