Featured Research

from universities, journals, and other organizations

New method to study key targets in Alzheimer's disease and prostate cancer

Date:
April 8, 2010
Source:
Institute for Research in Biomedicine (IRB Barcelona)
Summary:
When designing a drug against a disease, chemists often used detailed plans of the proteins affected and against which the drugs must act. However, about a third of the proteins of our bodies have not yet been "photographed" because they generally vary in form, are in constant movements and have very little structure.

In blue, prediction of the structure of denaturalized ubiquitin protein by previous computational models. In red, refined structures with the ERIDU model. These structures coincide with experimental data.
Credit: Copyright Salvatella lab / IRB Barcelona

When designing a drug against a disease, chemists often used detailed plans of the proteins affected and against which the drugs must act. However, about a third of the proteins of our bodies have not yet been "photographed" because they generally vary in form, are in constant movements and have very little structure. This lack of "photographs" hinders the design of drugs against diseases involving proteins that are structurally "evasive," such as those in Alzheimer's disease and in prostate cancer that does not respond to conventional drugs.

Related Articles


A group headed by Xavier Salvatella, ICREA researcher with the Chemistry and Molecular Pharmacology Programme at the Institute for Research in Biomedicine (IRB Barcelona), has developed a method to obtain structural information about intrinsically disordered proteins. The study appears in theJournal of the American Chemical Society.

Proteins are combinations of amino acids that fold in tri-dimensional forms that determine their function. The particularity of intrinsically disordered proteins is that because they are so dynamic and have little folded structure it is almost impossible to determine the variety of shapes that they adopt and consequently the functions they exert. Classical techniques, such as crystallography and nuclear magnetic resonance, do not work with these proteins. The researcher Xavier Salvatella, who left Cambridge to join IRB Barcelona a little over a year ago, develops methods to study the movements of proteins through combining laboratory experiments and computational predictions, an approach used by very few groups in the world. The researchers have simultaneously used a thousand processors of the supercomputer MareNostrum to study a single protein model and develop a new programme for structural calculation, named ERIDU. They then checked that the calculated structures agreed with lab data measured independently. The researchers will make ERIDU available to the international scientific community.

Objective: Alzheimer's disease and prostate cancer

With this new methodology, the group at IRB Barcelona, in collaboration with the University of Cambridge, will study why beta-amyloid plaques develop in Alzheimer's disease. They will examine the variety of forms that this protein adopts before and during accumulation. In another project, Salvatella will address the androgen receptor, the target protein in Kennedy's disease, a rare neurodegenerative disorder that causes muscular atrophy, as well in prostate cancer. "Oncologists are calling for new strategies to stop the growth of prostate tumours," explains Salvatella. The drugs currently available inhibit a part of the androgen receptor that is well known but in later stages of the disease these drugs can stop working. This protein has another important part that is intrinsically disordered and about which there is no structural information. "If our method is as reliable as we think, we could start to decipher the variety of structural forms that this other active part adopts in order to design drugs in the future."

In only ten years intrinsically disordered proteins have become one of the most interesting fields of research for biomedicine. "We have seen that the greater the complexity of the organism, the more proteins of this kind it has; however, although these proteins are highly relevant we still know very little about them because, among other things, it is very difficult to study their structures," comments Salvatella. Next October, IRB Barcelona, jointly with the BBVA Foundation, is organising a Barcelona BioMed Conference on intrinsically disordered proteins. This event will bring together experts in this field to discuss the most relevant breakthroughs made in pioneering labs worldwide.


Story Source:

The above story is based on materials provided by Institute for Research in Biomedicine (IRB Barcelona). Note: Materials may be edited for content and length.


Journal Reference:

  1. Santi Esteban-Martín, Robert Bryn Fenwick, Xavier Salvatella. Refinement of Ensembles Describing Unstructured Proteins Using NMR Residual Dipolar Couplings. Journal of the American Chemical Society, 2010; 132 (13): 4626 DOI: 10.1021/ja906995x

Cite This Page:

Institute for Research in Biomedicine (IRB Barcelona). "New method to study key targets in Alzheimer's disease and prostate cancer." ScienceDaily. ScienceDaily, 8 April 2010. <www.sciencedaily.com/releases/2010/04/100408105202.htm>.
Institute for Research in Biomedicine (IRB Barcelona). (2010, April 8). New method to study key targets in Alzheimer's disease and prostate cancer. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2010/04/100408105202.htm
Institute for Research in Biomedicine (IRB Barcelona). "New method to study key targets in Alzheimer's disease and prostate cancer." ScienceDaily. www.sciencedaily.com/releases/2010/04/100408105202.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Technology Is Ruining Snow Days For Students

How Technology Is Ruining Snow Days For Students

Newsy (Jan. 25, 2015) — More schools are using online classes to keep from losing time to snow days, but it only works if students have Internet access at home. Video provided by Newsy
Powered by NewsLook.com
Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) — A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Amazing Technology Allows Blind Mother to See Her Newborn Son

Amazing Technology Allows Blind Mother to See Her Newborn Son

RightThisMinute (Jan. 23, 2015) — Not only is Kathy seeing her newborn son for the first time, but this is actually the first time she has ever seen a baby. Kathy and her sister, Yvonne, have been legally blind since childhood, but thanks to an amazing new technology, eSight glasses, which gives those who are legally blind the ability to see, she got the chance to see the birth of her son. It&apos;s an incredible moment and an even better story. Video provided by RightThisMinute
Powered by NewsLook.com
One Dose, Then Surgery to Test Tumor Drugs Fast

One Dose, Then Surgery to Test Tumor Drugs Fast

AP (Jan. 23, 2015) — A Phoenix hospital is experimenting with a faster way to test much needed medications for deadly brain tumors. Patients get a single dose of a potential drug, and hours later have their tumor removed to see if the drug had any affect. (Jan. 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins