Featured Research

from universities, journals, and other organizations

Neurons growing in line

Date:
April 15, 2010
Source:
Goethe University Frankfurt
Summary:
Brain researchers have developed a novel method to grow cultured neurons in order to investigate basic mechanisms of memory. They grew two separate populations of neurons in microfluidic platforms. These neurons extended their processes through tiny grooves, to meet each other and form synaptic connections. Perpendicular to the grooves, a perfusion channel was constructed that allows the researchers to manipulate very small populations of synapses with drugs or neurotransmitters.

In order to be able to understand complex organs such as the brain or the nervous system, simplified model systems are required. A group of scientists led by the Frankfurt brain researcher Erin Schuman has successfully developed a novel method to grow cultured neurons in order to investigate basic mechanisms of memory. The researchers grew two separate populations of neurons in microfluidic platforms. These neurons extended their processes through tiny grooves, to meet each other and form synaptic connections.

Related Articles


Perpendicular to the grooves, a perfusion channel was constructed that allows the researchers to manipulate very small populations of synapses with drugs or neurotransmitters. The chambers are amenable to imaging, allowing researchers to visualize the dynamics of synapses, the movement of molecules within the neurons.

Studying cultured neurons makes it possible to reduce the complex three-dimensional network in living organisms to two dimensions. However, even in the laboratory, cell growth is totally disorganized, which makes a systematic study difficult. Neurons consist of a nucleus whose signals are transmitted to adjacent cells through a long extension (axon). Shorter extensions (dendrites) absorb the incoming signals. While the stimulus transfer along the axon and dendrites occurs electrically, the contact points between two neurons, the synapses, are bridged by biochemical signals. To understand how synapses are formed and which neurotransmitters play a part in their formation is not only an interesting topic for brain research, but may also aid the development of new pharmaceutical agents.

After demonstrating that functional synapses were formed in the approximately 150 microgrooves of the chamber, the brain researchers developed the device further in order to be able to stimulate the synapses directly. Here, they made use of the fact that cultured dendrites have a characteristic length so that the contact points with the axons of the neighboring cell populations could develop in about the same compartment of the microgrooves. There, the group implemented another small perfusion channel pervading the relevant area perpendicular to the "neuronal channels." This supply channel enables a direct manipulation of the synapses via solute substances.

A further refinement of the test arrangement was reached by restricting the biochemically effective fluid in the supply channel from infiltrating the channels containing the nerve fibers. Schuman and her collaborators managed to do so by letting in a solution on both sides of the main stream shielding the main stream. The three parallel fluid streams have the additional advantage that the perfusate may be exactly dosed by varying the width of the middle stream.

Besides, the amount of the perfusate is also subject to increased temporal control: The supply can be turned on and off within one minute. It is thus possible to imitate the short duration signals that are the language of the nervous system.

Erin Schuman, who relocated several months ago from the California Institute of Technology (Caltech) to the Max Planck Institute for Brain Research in Frankfurt, is interested in the function of synapses in the context of memory. How do synapses change during the storage of memory? And what happens during these processes at the molecular and cellular level? Years ago, her group discovered that dendrites can make the proteins required to change the functional capacity of synapses. The nucleus transcribes the required information as messenger RNA (mRNA), which is then sent out to the dendrites. When certain signals arrive, the dendrites translate the mRNA into protein using ribosomes present in the dendrite.


Story Source:

The above story is based on materials provided by Goethe University Frankfurt. Note: Materials may be edited for content and length.


Journal Reference:

  1. Taylor et al. Microfluidic Local Perfusion Chambers for the Visualization and Manipulation of Synapses. Neuron, 2010; 66 (1): 57 DOI: 10.1016/j.neuron.2010.03.022

Cite This Page:

Goethe University Frankfurt. "Neurons growing in line." ScienceDaily. ScienceDaily, 15 April 2010. <www.sciencedaily.com/releases/2010/04/100415091518.htm>.
Goethe University Frankfurt. (2010, April 15). Neurons growing in line. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2010/04/100415091518.htm
Goethe University Frankfurt. "Neurons growing in line." ScienceDaily. www.sciencedaily.com/releases/2010/04/100415091518.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
Yoga Could Be As Beneficial For The Heart As Walking, Biking

Yoga Could Be As Beneficial For The Heart As Walking, Biking

Newsy (Dec. 17, 2014) Yoga can help your weight, blood pressure, cholesterol and heart just as much as biking and walking does, a new study suggests. Video provided by Newsy
Powered by NewsLook.com
1st Responders Trained for Autism Sensitivity

1st Responders Trained for Autism Sensitivity

AP (Dec. 16, 2014) More departments are ordering their first responders to sit in on training sessions that focus on how to more effectively interact with those with autism spectrum disorder (Dec. 16) Video provided by AP
Powered by NewsLook.com
Guys Are Idiots, According To Sarcastic Study

Guys Are Idiots, According To Sarcastic Study

Newsy (Dec. 12, 2014) A study out of Britain suggest men are more idiotic than women based on the rate of accidental deaths and other factors. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins