Featured Research

from universities, journals, and other organizations

Key brain regions, basal ganglia and cerebellum, talk directly with each other

Date:
April 19, 2010
Source:
University of Pittsburgh Schools of the Health Sciences
Summary:
Researchers have found new evidence that the basal ganglia and the cerebellum, two important areas in the central nervous system, are linked together to form an integrated functional network.

Researchers at the University of Pittsburgh have found new evidence that the basal ganglia and the cerebellum, two important areas in the central nervous system, are linked together to form an integrated functional network. The findings are available online this week in the Proceedings of the National Academy of Sciences.

Related Articles


"The basal ganglia and the cerebellum are two major subcortical structures that receive input from and send output to the cerebral cortex to influence movement and cognition," explained senior author Peter L. Strick, Ph.D., professor of neurobiology and co-director of the Center for the Neural Basis of Cognition, Pitt School of Medicine.

Each subcortical structure houses a unique learning mechanism. Basal ganglia circuits are thought to be involved in reward-driven learning and the gradual formation of habits. In contrast, cerebellar circuits are thought to contribute to more rapid and plastic learning in response to errors in performance.

"In the past, these two learning mechanisms were viewed as entirely separate, and we wondered how signals from the two were integrated," Dr. Strick said. "Using a unique method for revealing chains of synaptically linked neurons, we have demonstrated that the cerebellum and basal ganglia are actually interconnected and communicate with each other."

This result not only has important implications for the normal control of movement and cognition, but it also helps to explain some puzzling findings from patients with basal ganglia disorders.

For example, Parkinson's disease is known to be caused by the degeneration of a specific set of neurons and their synapses in the basal ganglia. However, one of the treatments for the characteristic "resting" tremor of Parkinson's disease is to interrupt signals from the cerebellum to the cerebral cortex. Imaging studies of patients with Parkinson's disease and patients with dystonia, another disorder thought to be of basal ganglia origin, show abnormal increases in activity in the cerebellum.

"Our findings provide a neural basis for these findings," Dr. Strick said. "In essence, the pathways that we have discovered may enable abnormal signals from the basal ganglia to disrupt cerebellar function. The alterations in cerebellar function are likely to contribute to the disabling symptoms of basal ganglia disorders. Thus, a new approach for treating these symptoms might be to attempt to normalize cerebellar activity."

Andreea C. Bostan, a doctoral student in the Center for Neuroscience at the University of Pittsburgh, and Richard P. Dum, Ph.D., Center for the Neural Basis of Cognition, co-authored the paper. The study was funded by the Department of Veterans Affairs and the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of Pittsburgh Schools of the Health Sciences. Note: Materials may be edited for content and length.


Cite This Page:

University of Pittsburgh Schools of the Health Sciences. "Key brain regions, basal ganglia and cerebellum, talk directly with each other." ScienceDaily. ScienceDaily, 19 April 2010. <www.sciencedaily.com/releases/2010/04/100419150949.htm>.
University of Pittsburgh Schools of the Health Sciences. (2010, April 19). Key brain regions, basal ganglia and cerebellum, talk directly with each other. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2010/04/100419150949.htm
University of Pittsburgh Schools of the Health Sciences. "Key brain regions, basal ganglia and cerebellum, talk directly with each other." ScienceDaily. www.sciencedaily.com/releases/2010/04/100419150949.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com
Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) — Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) — Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins