Featured Research

from universities, journals, and other organizations

Biosensor chip enables high-sensitivity protein analysis for disease diagnosis

Date:
April 23, 2010
Source:
Technische Universitaet Muenchen
Summary:
In the battle against cancer and other diseases, precise analysis of specific proteins can point the way toward targeted treatments. Scientists have developed a novel biosensor chip that not only recognizes proteins that are characteristic for specific diseases, but also can show changes due to disease or medication.

In the battle against cancer and other diseases, precise analysis of specific proteins can point the way toward targeted treatments. Scientists at theTechnische Universitaet Muenchen (TUM), together with Fujitsu Laboratories of Japan, have developed a novel biosensor chip that not only recognizes proteins that are characteristic for specific diseases, but also can show if these proteins are changed through the influence of disease or drugs.

The human immune system recognizes pathogens by specific proteins on their surfaces. This detection principle manifests itself again and again in biology, and it is already used in medical tests. Such tests typically require relatively large amounts of sample material, however, and many problems can't be investigated in this way. For some tests, the target protein must be chemically modified by reagents. That requires both time and well trained lab technicians. Now scientists at TUM's Walter Schottky Institute have developed a biosensor one hundred times more sensitive than currently available tests in recognizing proteins that are characteristic for the clinical picture of specific diseases.

The biosensor chip holds synthetic DNA molecules, which are negatively charged, in an aqueous salt solution. These long molecules are tethered at one end to a gold surface. The free end is labeled with a fluorescent marker, so it can be optically observed; and at the very tip the scientists can place a "capture probe," a molecule that fits together with the target protein like the key to a lock. Alternating electric potentials set the DNA molecules in motion, swinging back and forth between "standing" and "lying" states with regular changes in a tightly confined but intense field. If the protein of interest is present in sample material placed on the biosensor chip, it will bind to the "key" molecule. And because this makes the DNA strands considerably heavier, their swinging motion will be noticeably slower. Precise confirmation of the identity of the captured protein can be deduced from measurements of this motion, since both the size and shape of the protein will affect the way the DNA molecules swing.

This approach is unique in its ability not only to determine the concentration of the target protein, but also to show if it is altered by the disease or the influence of medication. The scientists are currently working with a chip that can analyze 24 different proteins in parallel. "The potential to analyze, on a single chip, many proteins at once in terms of multiple parameters represents a significant advance," says Dr. Ulrich Rant, head of the project. Rant is a researcher in the laboratories of Prof. Gerhard Abstreiter at the Walter Schottky Institute, a central institute of TUM focused on the fundamental physics of semiconductor electronics.

Important application areas for this biosensor chip technology, which the TUM scientists have dubbed "switchSENSE," include medical diagnostics, pharmaceutical drug development, and proteomics research. It could eventually make its way into the doctor's office, as a simple and quick analysis tool for identifying infectious diseases.

Rant and his team have founded a startup company to commercialize their development, supported by the Technische Universitaet Muenchen and their industrial partner Fujitsu Laboratories Ltd. They have won additional support through a research transfer program called EXIST, sponsored by the German Federal Ministry of Economics and Technology. They have also been successful in the first stages of two entrepreneurial competitions, the Muenchener Businessplan Wettbewerb and Science4Life. Further development is targeted toward completion of a pre-production prototype by the end of 2010 and collaborative pilot projects with customers in the biotechnology and pharmaceutical sectors.

Within TUM, support for this research has come through the International Graduate School of Science and Engineering (IGSSE). Ulrich Rant is a Carl von Linde Fellow of TUM-IAS, the university's Institute for Advanced Study. In addition, one doctoral candidate working on this research is being financed by the International Graduate School of Materials Science of Complex Interfaces (CompInt).


Story Source:

The above story is based on materials provided by Technische Universitaet Muenchen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Rant et al. Detection and Size Analysis of Proteins with Switchable DNA Layers. Nano Letters, 2009; 9 (4): 1290 DOI: 10.1021/nl8026789

Cite This Page:

Technische Universitaet Muenchen. "Biosensor chip enables high-sensitivity protein analysis for disease diagnosis." ScienceDaily. ScienceDaily, 23 April 2010. <www.sciencedaily.com/releases/2010/04/100422141201.htm>.
Technische Universitaet Muenchen. (2010, April 23). Biosensor chip enables high-sensitivity protein analysis for disease diagnosis. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2010/04/100422141201.htm
Technische Universitaet Muenchen. "Biosensor chip enables high-sensitivity protein analysis for disease diagnosis." ScienceDaily. www.sciencedaily.com/releases/2010/04/100422141201.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Portable Breathalyzer Gets You Home Safely

Portable Breathalyzer Gets You Home Safely

Buzz60 (Oct. 21, 2014) Breeze, a portable breathalyzer, gets you home safely by instantly showing your blood alcohol content, and with one tap, lets you call an Uber, a cab or a friend from your contact list to pick you up. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins