Featured Research

from universities, journals, and other organizations

'Good vibrations' help in research into new bioactive metal complexes

Date:
April 27, 2010
Source:
Ruhr-Universitaet-Bochum
Summary:
Scientists have managed to accurately determine the location of metal complexes within living cancer cells using Raman microscopy. The researchers have thus gained new insights into the mechanism of action of metal-containing drugs, to which they ascribe great potential capacities, e.g. in the treatment of cancer.

Scientists from Bochum have managed to accurately determine the location of metal complexes within living cancer cells using Raman microscopy. The researchers have thus gained new insights into the mechanism of action of metal-containing drugs, to which they ascribe great potential capacities, e.g. in the treatment of cancer.

Related Articles


These findings are of fundamental significance and are published in the journal Angewandte Chemie.

New bioactive metal complexes

The two research teams working under the auspices of Dr. Ulrich Schatzschneider and Prof. Nils Metzler-Nolte synthesized metal compounds that can be effective in the treatment of cancer and infectious diseases. Prof. Metzler-Nolte pointed out that well over 50% of all chemical elements are metals. It is thus all the more surprising that the drug portfolio -- with a few exceptions -includes almost bioactive metal complexes despite the fact that these are just as active in cellular models of cancer as the best organic compounds. During traditional research, a drug molecules is synthesized to recognize a known target molecule in the cell, whereas there is almost no data available on the mechanism of action of such metal compounds. The researchers surmise that entirely new mechanisms of action could possibly be precisely due to the special properties of metal compounds. It is thus all the more important that these modes of action be clarified to ensure that new active ingredients with improved properties can be produced.

Assistance with Raman microscopy

Raman microscopy has now enabled the researchers from Bochum to get closer to this target. The molecules are excited in a microscope by the high-intensity light rays of a laser, which thus enables the recording of the characteristic fingerprint of a molecule located in the focus of the laser. The frequencies measured are just as characteristic of the respective molecule as a fingerprint is. There is also a superposition of many fingerprints due to the large number of substances within a cell, which often makes identification problematic. The scientists made use of the fact that the metal compounds investigated have characteristic vibrations in a frequency range that is not occupied by the other molecules -- comparable with individual violin parts in a trombone band. Prof. Martina Havenith and her research group, which has developed new physical methods of spectroscopic investigation, analyzed the fingerprint within the cell. Her colleagues were able to the view the absorption of the metal compound, observing that it is enriched in the nucleus of the cell after a few hours. In contrast to the common methods used, the researchers did not have to destroy the cells for their investigation. They also did not need any further labels such as marker molecules. The localisation of the compound in the nucleus of the cell supplies these synthesis chemists with important information on the mechanism of action and possible improvements in the compound.

The work of the researchers at Bochum is made possible by the Interfacial Systems Chemistry Research Department. Research Departments consist of groups of researchers from the Ruhr University that work together especially intensively concentrating on a specific field of research. The five Research Departments existing to date are sponsored by the Land North Rhine -Westphalia and the Mercator Foundation. The Interfacial Systems Chemistry Research Department investigates complex procedures on surfaces and interfaces.


Story Source:

The above story is based on materials provided by Ruhr-Universitaet-Bochum. Note: Materials may be edited for content and length.


Journal Reference:

  1. Konrad Meister, Johanna Niesel, Ulrich Schatzschneider, Nils Metzler-Nolte, Diedrich A. Schmidt, Martina Havenith. Markierungsfreie Visualisierung von lφslichen Metallcarbonylkomplexen in lebenden Zellen mithilfe von Raman-Mikrospektroskopie. Angewandte Chemie, 2010; DOI: 10.1002/ange.201000097

Cite This Page:

Ruhr-Universitaet-Bochum. "'Good vibrations' help in research into new bioactive metal complexes." ScienceDaily. ScienceDaily, 27 April 2010. <www.sciencedaily.com/releases/2010/04/100426081243.htm>.
Ruhr-Universitaet-Bochum. (2010, April 27). 'Good vibrations' help in research into new bioactive metal complexes. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2010/04/100426081243.htm
Ruhr-Universitaet-Bochum. "'Good vibrations' help in research into new bioactive metal complexes." ScienceDaily. www.sciencedaily.com/releases/2010/04/100426081243.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Magnetic Motors, Not Cables, Power This Elevator

Magnetic Motors, Not Cables, Power This Elevator

Newsy (Nov. 28, 2014) — Imagine an elevator without cables. ThyssenKrupp has drafted an elevator concept that would cruise on linear magnetic motors. Video provided by Newsy
Powered by NewsLook.com
NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) — The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins