Featured Research

from universities, journals, and other organizations

New therapy for cocaine toxicity: Enzyme break downs cocaine into inactive products nearly 1,000 times faster than human body does

Date:
May 8, 2010
Source:
Federation of American Societies for Experimental Biology
Summary:
Researchers have developed and tested a modified enzyme that can break down cocaine into inactive products nearly 1,000 times faster than the human body does regularly. The engineered enzyme, called CocE, may be an excellent candidate for clinical use.

Cocaine toxicity due to drug overdose results in more than half a million emergency room visits annually. Despite these alarming statistics, there is no Food and Drug Administration-approved pharmacotherapy specifically designed to treat cocaine toxicity. Emergency medical personnel are limited to treating only the immediate life-threatening symptoms of patients, while toxic levels of cocaine and its metabolic break-down products persist and continue to damage the cardiovascular system, liver and brain.

However, researchers have now developed and tested a modified enzyme that can break down cocaine into inactive products nearly 1,000 times faster than the human body does regularly. This engineered enzyme, called CocE, may be an excellent candidate for clinical use.

The difficulty in designing a therapy for cocaine toxicity stems from the drug's complex mechanism of action. Cocaine can block multiple targets in the brain and body, which accounts for this drug's cardiovascular and anesthetic effects, as well as its strong addictive properties. In addition, many of the metabolites of cocaine formed by the body (such as norcocaine and cocaethylene) have similar and sometimes stronger effects than cocaine itself.

Due to the myriad of action sites that would need to be blocked to eliminate the toxic physiological effects of cocaine and its by-products, the best strategy to treating toxicity from overdose is to directly eliminate the drug.

Remy L. Brim and colleagues at the University of Michigan, in collaboration with Columbia University and the University of Kentucky, have been researching the potential of cocaine esterase (CocE) to block cocaine toxicity by eliminating cocaine. CocE is an enzyme originally isolated from a soil bacterium found around the roots of the coca plant, that can break down cocaine into the same metabolites as the natural human enzyme butyrylcholinesterase, only much more rapidly.

CocE, however, is naturally unstable at the normal body temperature of 37C. To enhance the thermal stability of the enzyme, the investigators used a series of biochemical and computational approaches to modify the enzyme.

The thermally stable CocE was found to effectively degrade cocaine and two of cocaine's active metabolites, norcocaine and cocaethylene, and not degrade benzoylecgonine, the metabolite used in urinalyses for recent cocaine use. The researchers also evaluated CocE's ability to break down cocaine in the presence of drugs commonly co-abused with cocaine, and observed no reduction in CocE's action in the presence of alcohol, nicotine, and morphine, among others.

These promising results, in combination with previous studies that show CocE can reverse cocaine-induced cardiovascular changes, seizures, convulsions and lethality in rodent models, suggest that CocE may be a good candidate for clinical treatment of cocaine toxicity.

Brim will present this research, which was supported by the National Institutes of Health, the National Institute of Drug Abuse, and Reckitt Benckiser, at the American Society for Pharmacology and Experimental Therapeutics annual meeting in a poster titled "Ability of bacterial cocaine esterase to hydrolyze active cocaine metabolites, and function in the presence of commonly co-abused drugs."


Story Source:

The above story is based on materials provided by Federation of American Societies for Experimental Biology. Note: Materials may be edited for content and length.


Cite This Page:

Federation of American Societies for Experimental Biology. "New therapy for cocaine toxicity: Enzyme break downs cocaine into inactive products nearly 1,000 times faster than human body does." ScienceDaily. ScienceDaily, 8 May 2010. <www.sciencedaily.com/releases/2010/04/100426105637.htm>.
Federation of American Societies for Experimental Biology. (2010, May 8). New therapy for cocaine toxicity: Enzyme break downs cocaine into inactive products nearly 1,000 times faster than human body does. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2010/04/100426105637.htm
Federation of American Societies for Experimental Biology. "New therapy for cocaine toxicity: Enzyme break downs cocaine into inactive products nearly 1,000 times faster than human body does." ScienceDaily. www.sciencedaily.com/releases/2010/04/100426105637.htm (accessed July 23, 2014).

Share This




More Mind & Brain News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Do Obese Women Have 'Food Learning Impairment'?

Do Obese Women Have 'Food Learning Impairment'?

Newsy (July 18, 2014) Yale researchers tested 135 men and women, and it was only obese women who were deemed to have "impaired associative learning." Video provided by Newsy
Powered by NewsLook.com
Does Mixing Alcohol and Energy Drinks Boost Urge To Drink?

Does Mixing Alcohol and Energy Drinks Boost Urge To Drink?

Newsy (July 18, 2014) A new study suggests that mixing alcohol with energy drinks makes you want to keep the party going. Video provided by Newsy
Powered by NewsLook.com
Pot Cooking Class Teaches Responsible Eating

Pot Cooking Class Teaches Responsible Eating

AP (July 18, 2014) Following the nationwide trend of eased restrictions on marijuana use, pot edibles are growing in popularity. One Boston-area cooking class is teaching people how to eat pot responsibly. (July 18) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins