Featured Research

from universities, journals, and other organizations

Shoe power generator, embedded in the sole of a shoe, harvest energy

Date:
April 27, 2010
Source:
Louisiana Tech University
Summary:
New technology harvests power from a small generator embedded in the sole of a shoe. It is based on new voltage regulation circuits that efficiently convert a piezoelectric charge into usable voltage for charging batteries or for directly powering electronics.

Illustration of Dr. Ville Kaajakari's shoe power generator.
Credit: Image courtesy of Louisiana Tech University

Dr. Ville Kaajakari, assistant professor of electrical engineering at Louisiana Tech University has developed a technology that harvests power from a small generator embedded in the sole of a shoe.

Kaajakari's innovative technology, developed at Louisiana Tech's Institute for Micromanufacturing (IfM), is based on new voltage regulation circuits that efficiently convert a piezoelectric charge into usable voltage for charging batteries or for directly powering electronics.

"This technology could benefit, for example, hikers that need emergency location devices or beacons," said Kaajakari. "For more general use, you can use it to power portable devices without wasteful batteries."

The technology is being featured by MEMS Investor Journal, a national online industry publication. MEMS are tiny "smart" devices that combine computer chips with micro-components such as sensors, gears, flow-channels, mirrors and actuators.MEMS Investor Journal is an independent publication that provides investment professionals with the latest developments in the micro electro mechanical systems (MEMS) industry.

According to the article, energy harvesting is an attractive way to power MEMS sensors and locator devices such as GPS. However, power harvesting technologies often fall short in terms of output as many of today's applications require higher power levels.

Kaajakari's breakthrough uses a low-cost polymer transducer that has metalized surfaces for electrical contact. Unlike conventional ceramic transducers, the polymer-based generator is soft and robust, matching the properties of regular shoe fillings. The transducer can therefore replace the regular heel shock absorber with no loss in user experience.

In addition to running sensors and inertial navigation, Kaajakari's shoe power generator can also be used to power RF transponders and GPS receivers.

"Ultimately, we want to bring up the power levels up to a point where we could, in addition to sensors, charge or power other portable devices such as cell phones."

http://www.memsinvestorjournal.com/2010/04/microstructured-piezoelectric-shoe-power-generator-outperforms-batteries.html#more

Article: Microstructured piezoelectric shoe power generator outperforms batteries


Story Source:

The above story is based on materials provided by Louisiana Tech University. The original article was written by Dave Guerin. Note: Materials may be edited for content and length.


Cite This Page:

Louisiana Tech University. "Shoe power generator, embedded in the sole of a shoe, harvest energy." ScienceDaily. ScienceDaily, 27 April 2010. <www.sciencedaily.com/releases/2010/04/100426113137.htm>.
Louisiana Tech University. (2010, April 27). Shoe power generator, embedded in the sole of a shoe, harvest energy. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2010/04/100426113137.htm
Louisiana Tech University. "Shoe power generator, embedded in the sole of a shoe, harvest energy." ScienceDaily. www.sciencedaily.com/releases/2010/04/100426113137.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins