Featured Research

from universities, journals, and other organizations

New 'metamaterial' device may lead to see-through cameras and scanners

Date:
May 6, 2010
Source:
Optical Society of America
Summary:
Devices that can mimic Superman's X-ray vision and see through clothing, walls or human flesh are the stuff of comic book fantasy, but a group of scientists has taken a step toward making such futuristic devices a reality.

Devices that can mimic Superman's X-ray vision and see through clothing, walls or human flesh are the stuff of comic book fantasy, but a group of scientists at Boston University (BU) has taken a step toward making such futuristic devices a reality.

The researchers will present their device at the Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS: 2010), which takes place May 16 to 21 at the San Jose McEnery Convention Center in San Jose, Calif.

Led by BU's Richard Averitt, the team has developed a new way to detect and control terahertz (THz) radiation using optics and materials science. This type of radiation is made up of electromagnetic waves that can pass through materials safely. Their work may pave the way for safer medical and security scanners, new communication devices, and more sensitive chemical detectors.

Scientists and engineers have long sought devices that could control THz transmissions. Such a device would be a technological breakthrough because it would allow information to be sent via THz waves. Like X-rays, these waves can pass through solid materials, potentially revealing hidden details within. Unlike the ionizing energy of real X-rays, THz radiation causes no damage to materials as it passes through them.

The quest to create devices that emit or manipulate THz radiation is often referred to as a race to fill in the "THz gap," since the frequency of THz radiation on the electromagnetic spectrum falls in between microwave and infrared radiation -- both of which are already broadly used in communication.

This race has often stumbled right out of the blocks, however, because no technologies have proven able to effectively solve the basic problem of manipulating the properties of a beam of THz radiation. Now Averitt and his colleagues have made an important step in this direction by using an unusual class of new materials known as "metamaterials."

Metamaterials are unusual in the way they interact with light, giving them properties that don't exist in natural materials. They have grabbed headlines and captured the popular imagination in recent years after several groups of researchers have used metamaterials to achieve limited forms of "cloaking" -- the ability of a material to completely bend light around itself so as to appear invisible.

Averitt uses these same sorts of metamaterials to interact with and change the intensity of a beam of THz radiation. His device consists of an array of split-ring-resonators -- a checkerboard of flexible metamaterial panels that can bend and tilt. By rotating the panels, his team can control the electromagnetic properties of a beam of THz energy passing by them.

"The idea is that you can manipulate your terahertz beam by reorienting the metamaterial elements as opposed to reorienting your beam," says Averitt.

Arrays of these metamaterial panels could potentially function as pixels on a camera that detects THz radiation, he says. Absorption of THz radiation would cause the panels to tilt more or less depending on the intensity of the THz bombarding them.

"One of the goals, from a technological point of view, is to be able to do stand-off imaging, to be able to detect things beneath a person's clothes or in a package," says Averitt.

Such detection applications, though, would require more powerful THz sources like quantum cascade lasers, which are under development -- though great technological strides have been made in the last few years.

Presentation CtuF3, "Structurally Reconfigurable Metamaterials at Terahertz Frequencies," by Hu Tao and Richard D. Averitt takes place on May 18.


Story Source:

The above story is based on materials provided by Optical Society of America. Note: Materials may be edited for content and length.


Cite This Page:

Optical Society of America. "New 'metamaterial' device may lead to see-through cameras and scanners." ScienceDaily. ScienceDaily, 6 May 2010. <www.sciencedaily.com/releases/2010/05/100506112605.htm>.
Optical Society of America. (2010, May 6). New 'metamaterial' device may lead to see-through cameras and scanners. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2010/05/100506112605.htm
Optical Society of America. "New 'metamaterial' device may lead to see-through cameras and scanners." ScienceDaily. www.sciencedaily.com/releases/2010/05/100506112605.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Argentina's Tax Evaders Detected, Hunted Down by Drones

Argentina's Tax Evaders Detected, Hunted Down by Drones

AFP (Sep. 30, 2014) Argentina doesn't only have Lionel Messi the footballer, it has now also acquired "Mesi" the drone system which monitors undeclared mansions, swimming pools and soy fields to curb tax evasion in the country. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
CERN Celebrates 60 Years of Science

CERN Celebrates 60 Years of Science

Reuters - Business Video Online (Sep. 29, 2014) CERN, the European Organisation for Nuclear Research, celebrates 60 years of bringing nations together through science. As Joanna Partridge reports from inside the famous science centre it's also planning to turn the Large Hadron Collider particle accelerator back on after an upgrade. Video provided by Reuters
Powered by NewsLook.com
This 'Invisibility Cloak' Is Simpler Than Most

This 'Invisibility Cloak' Is Simpler Than Most

Newsy (Sep. 28, 2014) Researchers from the University of Rochester have created a type of invisibility cloak with simple focal lenses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins