Featured Research

from universities, journals, and other organizations

Understanding light-driven molecular switches

Date:
May 20, 2010
Source:
Ruhr-Universitaet-Bochum
Summary:
Light-driven molecular switches are already used in technical devices such as LCD displays and storage media. Full comprehension of the processes at a molecular scale is required to increase their efficiency, but this knowledge had not been available to date. By computer simulation studies, a consortium of theoretical chemists and physicists has now managed to reconstruct the exact course of the light-driven molecular changes and gain insight into the switching process. This enables targeted chemical design of light-controllable nanotechnological devices.

Light-driven molecular switches are already used in technical devices such as LCD displays and storage media. Full comprehension of the processes at a molecular scale is required to increase their efficiency, but this knowledge had not been available to date.

By computer simulation studies, a consortium of theoretical chemists and physicists from the Ruhr-University Bochum and King's College London has now managed to reconstruct the exact course of the light-driven molecular changes and gain insight into the switching process. This enables targeted chemical design of light-controllable nanotechnological devices. Dr. Marcus Böckmann, Prof. Dominik Marx (RUB) and Dr. Nikos Doltsinis (King's College) have published their findings in Angewandte Chemie International Edition.

The colour of light causes the molecule to switch over

Chemically modified azobenzene was used for the computer simulation based on the laws of quantum mechanics. The azobenzene molecule can have two forms and vary between them, different coloured light triggering the switching processes.

The researchers carried out a detailed computer simulation study of the switchover processes of the two molecular forms, attaining unprecedented insight into the atomic resolution. Dr. Markus Böckmann explained that it is important that the switching process is fast and highly efficient in all devices in which it is used.

Recent experiments have shown that particular chemical modifications in azobenzene can significantly enhance this process. However, to date the reasons for this improvement have not been understood.

The computer simulation study could explain the experimental results for the first time. The researchers reported that they have been able to establish a clear relationship between the structure and switching properties of the molecule. This is a decisive step for the chemical design of azobenzene-based light-driven nanotechnological devices and thus the development of improved light-controlled materials.


Story Source:

The above story is based on materials provided by Ruhr-Universitaet-Bochum. Note: Materials may be edited for content and length.


Journal Reference:

  1. Marcus Böckmann, Nikos L. Doltsinis, Dominik Marx. Unraveling a Chemically Enhanced Photoswitch: Bridged Azobenzene. Angewandte Chemie, 2010; DOI: 10.1002/ange.200907039

Cite This Page:

Ruhr-Universitaet-Bochum. "Understanding light-driven molecular switches." ScienceDaily. ScienceDaily, 20 May 2010. <www.sciencedaily.com/releases/2010/05/100520093204.htm>.
Ruhr-Universitaet-Bochum. (2010, May 20). Understanding light-driven molecular switches. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2010/05/100520093204.htm
Ruhr-Universitaet-Bochum. "Understanding light-driven molecular switches." ScienceDaily. www.sciencedaily.com/releases/2010/05/100520093204.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Newsy (Apr. 19, 2014) — Nike fired most of its Digital Sport hardware team, the group behind Nike's FuelBand device. Could Apple or an overcrowded market be behind layoffs? Video provided by Newsy
Powered by NewsLook.com
Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) — After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) — An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) — It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins