Featured Research

from universities, journals, and other organizations

'Scrubbing' chemical-contaminated buildings clean with lasers

Date:
May 21, 2010
Source:
US Department of Homeland Security - Science and Technology
Summary:
While no terrorist has managed to deploy a dirty bomb, the same cannot be said of chemical agents. In a series of tests still underway researchers are using lasers to scrub surfaces clean of sulfur mustard gas and VX, a nerve agent. The tests have proved successful so far, even on complex, porous surfaces like concrete.

A "neodymium-YAG" laser will decompose VX nerve agent in this vinyl tile. Normally near-infrared, the laser turns ultraviolet as the frequency is increased. The UV light breaks the molecular bonds, decomposing the deadly nerve agent until it is just a harmless brown stain.
Credit: INL

Dhiren Barot was an al Qaeda operative involved in plots to blow up the London subway, among other targets. To maximize the damage and the terror, he planned to pack some of his bombs with toxic gas. Fortunately, in August 2004, British authorities nabbed Barot and his accomplices before they could carry out their attacks.

Related Articles


But the threat of a gas attack remains. Where Barot failed, at some point someone might succeed. The right response to such an attack could minimize exposure and save hundreds of thousands of American lives.

With funding and guidance from the Department of Homeland Security's Science and Technology Directorate (S&T), chemists at Idaho National Laboratory (INL) are researching ways to help the nation respond to and clean up after potential chemical attacks. They have been studying decontamination techniques for almost a decade.

Cleaning up chemical-contaminated structures can be difficult, costly, and time-consuming. For one thing, most preferred methods employ other chemicals, like bleach solutions, which can be corrosive and aggressive. Many building materials -- like cement and brick -- are extremely porous and getting contaminants off such surfaces is difficult, as contaminants will seep into cracks and pores.

According to Donald Bansleben, program manager in S&T's Chemical and Biological Division, lasers could one day play a big role. "Lasers could help to scrub chemical-contaminated buildings clean and become a tool in the toolbox to speed a facility's return to normal operations."

Just as contaminants might get into those cracks and pores, water, too, can penetrate, and that's where lasers come in. Laser pulses can flash that water into steam, carrying the contaminants back to the surface for removal by chelation or other means. "It's a kind of laser steam-cleaning," says chemist Bob Fox.

When INL began investigating lasers, researchers were looking for ways to dispose of radioactive contamination after a dirty bomb. Under the new S&T program, the team has been extending its work to chemical-weapon decontamination. While no terrorist has managed to deploy a dirty bomb, the same cannot be said of chemical agents.

In a series of tests still underway at the Army's Aberdeen Proving Ground, INL researchers have been using ultraviolet-wavelength lasers to scrub surfaces clean of sulfur mustard gas and VX, a nerve agent. The tests have proved successful so far, even on complex, porous surfaces like concrete.

Lasers can degrade weapons like VX in two ways: photochemically or photothermally. In photochemical decomposition, high-energy laser photons blast apart chemical bonds, slicing the agent into pieces. In photothermal decomposition, photons heat up the target surface enough to speed along natural degradation reactions. In some cases, the intense heat by itself can cause contaminant molecules to fall apart.

Knowing how chemical contaminants fall apart is key, because some of the elements resulting from their degradation products can themselves be hazardous. But according to Fox, the tests look good in this regard, too. "The lasers are showing neutralization of the agent without generation of dangerous byproducts," he says.

And even if they're not used to degrade VX or other agents, lasers could still be helpful in cleanup scenarios. Laser light could blast nasty chemicals off a wall, for example, and an integrated vacuum system could suck them up.

Fox and his team are adapting an established technology. Lasers have been used in cleanup capacities for more than a decade. Dentists employ them to kill periodontal bacteria and quash mouth infections. Doctors use them to remove tattoos. And lasers have recently become a common tool to restore precious artwork.

Laser technology has other commercial applications. Some cleanup and restoration firms are already using lasers to scrub soot off building facades. And these industrial operations often use automated lasers, demonstrating that laser work can be done remotely, minimizing risks to remediation personnel responding to a chemical or radiological attack.

Fox stresses that laser decontamination is in the proof-of-principle stage, and is not an anti-terror panacea. Still, several government agencies are paying close attention.

As for biological decontamination, like what was needed in the U.S. after the 2001 anthrax attacks, Fox has not yet tested bacteria-laden surfaces.

"I don't know," he says. "But I'm willing to shine my light on anything."


Story Source:

The above story is based on materials provided by US Department of Homeland Security - Science and Technology. Note: Materials may be edited for content and length.


Cite This Page:

US Department of Homeland Security - Science and Technology. "'Scrubbing' chemical-contaminated buildings clean with lasers." ScienceDaily. ScienceDaily, 21 May 2010. <www.sciencedaily.com/releases/2010/05/100520170939.htm>.
US Department of Homeland Security - Science and Technology. (2010, May 21). 'Scrubbing' chemical-contaminated buildings clean with lasers. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2010/05/100520170939.htm
US Department of Homeland Security - Science and Technology. "'Scrubbing' chemical-contaminated buildings clean with lasers." ScienceDaily. www.sciencedaily.com/releases/2010/05/100520170939.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins