Featured Research

from universities, journals, and other organizations

Scientists break barrier to creating potential therapeutic molecules

Date:
June 6, 2010
Source:
Scripps Research Institute
Summary:
Scientists have created a novel technique that for the first time will allow the efficient production of a molecular structure that is common to a vast array of natural molecules. This advance provides a means to explore the potential of this molecular substructure in the search for new therapies.

Scientists from The Scripps Research Institute have created a novel technique that for the first time will allow the efficient production of a molecular structure that is common to a vast array of natural molecules. This advance provides a means to explore the potential of this molecular substructure in the search for new therapies.

The study was published on May 23, 2010 in an advance online edition of the journal Nature Chemistry.

The structures in question, called "skipped polyenes," are shared by a large class of molecules that play a critical role in human health, including polyunsaturated fatty acids, which are vital to blood pressure regulation, inflammation, and immune response. The structures are also shared by a number of potent antibiotic, antifungal, and cytotoxic (toxic to living cells) compounds.

Simple and efficient methods for the preparation of skipped polyenes have generally been lacking, creating a significant barrier to exploring their potential as drugs. Currently, the production of molecules that contain simple variants of this substructure is quite labor intensive.

"Our study identifies a novel chemical reaction that will enable the accelerated production of this type of structural motif," said Associate Professor Glenn Micalizio, who authored the new study with a member of his Scripps Florida lab, Research Associate Todd K. Macklin. "This new reaction provides a means to explore the medicinal potential of molecules bearing complex skipped polyenes -- something that we simply haven't been able to do until now."

Chemical Short Cuts

In essence, the new chemical method provides a means to replace long, step-by-step sequences of reactions that would have otherwise been required to prepare skipped polyenes. The new chemical process defines a fundamentally novel pathway (a new carbon-carbon bond forming process) to these complex structures that proceeds in just a fraction of the number of chemical steps previously required.

As such, the new method not only saves time, but greatly increases efficiency for the production of molecules that house the skipped polyene core. In chemistry, each of the steps (or reactions) used to prepare a complex structure typically proceeds with less than 100 percent efficiency, notes Micalizio -- maybe 80 to 90 percent of the initial material can successfully be advanced to the next chemical step. As a result, the requirement of long sequences of reactions, where yields per step are compounded mathematically through the sequence, typically result in poor overall efficiency.

"If one can invent reactions that decrease the length of sequences required to prepare complex structures, great enhancements of efficiency can result," said Micalizio. "A central focus of our laboratory is designing new chemical reactions that do just that. Since 2005, we have been advancing a large class of chemical transformations that can be seen as 'chemical short cuts' -- so that ultimately scientists can better explore the therapeutic potential of molecules inspired by the vast and diverse structures that we see in nature."

The new technique described in the Nature Chemistry paper proceeds by bond formation between two specific classes of molecules, vinylcyclopropanes and alkynes (or vinylsilanes), using a metal-promoted cross-coupling reaction to assemble the key structural motif.

"That initial metal-promoted coupling leads to a very unstable intermediate molecule," Micalizio said. "Actually, the chemical intermediate spontaneously rearranges to stabilize the structure, through a process that establishes all of the complex architecture of the skipped polyene product."

The research for the paper, "Convergent and Stereospecific Synthesis of Complex Skipped Polyenes and Polyunsaturated Fatty Acids," was supported by the American Cancer Society, the Arnold and Mabel Beckman Foundation, Boehringer Ingelheim, Eli Lilly & Co., and the National Institutes of Health.


Story Source:

The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Todd K. Macklin, Glenn C. Micalizio. Convergent and stereospecific synthesis of complex skipped polyenes and polyunsaturated fatty acids. Nature Chemistry, 2010; DOI: 10.1038/nchem.665

Cite This Page:

Scripps Research Institute. "Scientists break barrier to creating potential therapeutic molecules." ScienceDaily. ScienceDaily, 6 June 2010. <www.sciencedaily.com/releases/2010/05/100524151435.htm>.
Scripps Research Institute. (2010, June 6). Scientists break barrier to creating potential therapeutic molecules. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2010/05/100524151435.htm
Scripps Research Institute. "Scientists break barrier to creating potential therapeutic molecules." ScienceDaily. www.sciencedaily.com/releases/2010/05/100524151435.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins