Featured Research

from universities, journals, and other organizations

Single-molecule manipulation for the masses: New technique offers dramatic improvements in throughput and cost

Date:
June 2, 2010
Source:
Harvard University
Summary:
Scientists have developed a new massively-parallel approach for manipulating single DNA and protein molecules and studying their interactions under force.

This is the Centrifuge Force Micoscope in action.
Credit: Dr. Wesley Wong

Scientists have developed a new massively-parallel approach for manipulating single DNA and protein molecules and studying their interactions under force.

Related Articles


The finding appears in the June 2 issue of Biophysical Journal.

The team of researchers from the Rowland Institute at Harvard University claim that their technique, which they call "single molecule centrifugation," offers dramatic improvements in throughput and cost compared with more established techniques.

"By combining a microscope and a centrifuge, forces can be applied to many molecules at once while simultaneously observing their nano-to-microscale motions," explains author Wesley P. Wong, a Principal Investigator at Rowland.

Recent technologies such as optical and magnetic tweezers and the Atomic Force Microscope (AFM) have enabled the mechanical manipulation of single molecules, leading to new insights in biological systems ranging from DNA replication to blood clotting.

However, the tools used to perform these experiments are often expensive and can be tedious and complicated to use, limiting their use among scientists.

The Harvard researchers aimed to solve these problems by developing an instrument they call the Centrifuge Force Microscope (CFM), which uses centrifugal force to manipulate molecules.

Developing the instrument involved miniaturizing a light microscope and safely rotating it at high speeds while maintaining precision and control.

Experiments involve tethering thousands of micron-sized "carrier" particles to a surface and observing their motion as the sample rotates to generate the centrifugal force.

"We're really excited about this new method," says co-author Ken Halvorsen, a postdoctoral fellow. "After doing tedious single-molecule experiments for years, we thought there had to be a better way. Now, instead of doing one experiment thousands of times we can do thousands of experiments at once."

The scientists expect that the relative low cost and simplicity of the method will attract researchers who may be intimidated by the cost and technical skills required for other methods, ultimately enabling new discoveries in both health and basic science research.

The researchers acknowledge support from the Rowland Junior Fellows program at Harvard University.


Story Source:

The above story is based on materials provided by Harvard University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ken Halvorsen and Wesley P. Wong. Massively Parallel Single-Molecule Manipulation Using Centrifugal Force. Biophysical Journal, 2010; DOI: 10.1016/j.bpj.2010.03.012

Cite This Page:

Harvard University. "Single-molecule manipulation for the masses: New technique offers dramatic improvements in throughput and cost." ScienceDaily. ScienceDaily, 2 June 2010. <www.sciencedaily.com/releases/2010/06/100602090319.htm>.
Harvard University. (2010, June 2). Single-molecule manipulation for the masses: New technique offers dramatic improvements in throughput and cost. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2010/06/100602090319.htm
Harvard University. "Single-molecule manipulation for the masses: New technique offers dramatic improvements in throughput and cost." ScienceDaily. www.sciencedaily.com/releases/2010/06/100602090319.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins