Featured Research

from universities, journals, and other organizations

Walls falling faster for solid-state memory

Date:
June 9, 2010
Source:
National Institute of Standards and Technology (NIST)
Summary:
Researchers have found that flaws in the structure of magnetic nanoscale wires play an important role in determining the operating speed of novel devices using such nanowires to store and process information.

After running a series of complex computer simulations, researchers have found that flaws in the structure of magnetic nanoscale wires play an important role in determining the operating speed of novel devices using such nanowires to store and process information. The finding*, made by researchers from the National Institute of Standards and Technology (NIST), the University of Maryland, and the University of Paris XI, will help to deepen the physical understanding and guide the interpretation of future experiments of these next-generation devices.

Related Articles


Magnetic nanowires store information in discrete bands of magnetic spins. One can imagine the nanowire like a straw sucking up and holding the liquid of a meticulously layered chocolate and vanilla milkshake, with the chocolate segments representing 1s and the vanilla 0s. The boundaries between these layers are called domain walls. Researchers manipulate the information stored on the nanowire using an electrical current to push the domain walls, and the information they enclose, through the wire and past immobile read and write heads.

Interpretations of experiments seeking to measure how domain walls move have largely ignored the effects of "disorder" -- usually the result of defects or impurities in the structure of the nanowires. To see how disorder affects the motion of these microscopic magnetic domains, NIST researchers and their colleagues introduced disorder into their computer simulations.

Their simulations showed that disorder, which causes friction within the nanowires, can increase the rate at which a current can move domain walls.

According to NIST physicist Mark Stiles, friction can cause the domain walls to move faster because they need to lose energy in order to move down the wire.

For example, when a gyroscope spins, it resists the force of gravity. If a little friction is introduced into the gyroscope's bearing, the gyroscope will fall over more quickly. Similarly, in the absence of damping, a domain wall will only move from one side of the nanowire to the other. Disorder within the nanowire enables the domain walls to lose energy, which gives them the freedom to "fall" down the length of the wire as they move back and forth.

"We can say that the domain wall is moving as if it were in a system that has considerably greater effective damping than the actual damping," says NIST physicist and lead researcher Hongki Min. "This increase in the effective damping is significant enough that it should affect the interpretation of most future domain wall experiments."


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Min et al. Effects of Disorder and Internal Dynamics on Vortex Wall Propagation. Physical Review Letters, 2010; 104 (21): 217201 DOI: 10.1103/PhysRevLett.104.217201

Cite This Page:

National Institute of Standards and Technology (NIST). "Walls falling faster for solid-state memory." ScienceDaily. ScienceDaily, 9 June 2010. <www.sciencedaily.com/releases/2010/06/100609150935.htm>.
National Institute of Standards and Technology (NIST). (2010, June 9). Walls falling faster for solid-state memory. ScienceDaily. Retrieved March 28, 2015 from www.sciencedaily.com/releases/2010/06/100609150935.htm
National Institute of Standards and Technology (NIST). "Walls falling faster for solid-state memory." ScienceDaily. www.sciencedaily.com/releases/2010/06/100609150935.htm (accessed March 28, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, March 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Inspectors Found Faulty Work Before NYC Blast

Inspectors Found Faulty Work Before NYC Blast

AP (Mar. 27, 2015) An hour before an apparent gas explosion sent flames soaring and debris flying at a Manhattan apartment building, injuring 19 people, utility company inspectors decided the work being done there was faulty. (March 27) Video provided by AP
Powered by NewsLook.com
Facebook Building Plane-Sized Drones For Global Internet

Facebook Building Plane-Sized Drones For Global Internet

Newsy (Mar. 27, 2015) Facebook on Thursday revealed more details about its Internet-connected drone project. The drone is bigger than a 737, but lighter than a car. Video provided by Newsy
Powered by NewsLook.com
Robot Returns from International Space Station and Sets Two Guinness World Records

Robot Returns from International Space Station and Sets Two Guinness World Records

Reuters - Light News Video Online (Mar. 27, 2015) The companion robot "Kirobo" returns to earth from the International Space Station and sets two Guinness World Records. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com
Residents Witness Building Explosion, Collapse

Residents Witness Building Explosion, Collapse

AP (Mar. 26, 2015) Witnesses recount the sites and sounds of a massive explosion and subsequent building collapse in the heart of Manhattan&apos;s trendy East Village on Thursday. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins