Featured Research

from universities, journals, and other organizations

Making cancer killers: Reprogramming immune system cells to produce natural killer cells for cancer

Date:
June 11, 2010
Source:
Wellcome Trust Sanger Institute
Summary:
A team of researchers has developed a method to produce cells that kill tumor cells in the lab and prevent tumors forming in mouse models of cancer. Although the current work is in cells and mice, if the research transfers to human biology, the new type of cell could be a new source for cell-based anticancer therapies.

A team of researchers has developed a method to produce cells that kill tumour cells in the lab and prevent tumours forming in mouse models of cancer. Although the current work is in cells and mouse, if the research transfers to human biology, the new type of cell could be a new source for cell-based anticancer therapies.

The cells were produced by knocking out a single gene essential in the pathways of development of immune cells: the modified cells become a novel type, which the authors call Induced T to Natural Killer Cells (ITNK cells).

Many cell types cooperate in the immune system to battle invaders, such as bacteria and viruses, and to remove abnormal or dead cells. T lymphocytes/T cells play an important part in defending against pathogens and abnormal self cells. They are thought also to play a role in autoimmune disease.

In this research, T cells were transformed into cells similar to another type, Natural Killer (NK) cells, which commonly act against viruses and cancer cells.

"We have been examining ways to produce clinically useful immune system cells," explains Peng Li, PhD student and first author on the Science publication, from the Wellcome Trust Sanger Institute. "We had shown that a gene called Bcl11b was essential for normal development of immune system cells -- and of particular interest in the development of T cells.

"Here we can see the fruits of that work: we show, for the first time, that we can modify the developmental fate of immune system cells to produce a novel type that -- if we can see the same effect in humans -- could be of enormous value in cancer treatment."

The Bcl11b protein is a master switch that works by regulating the activity of other genes and it was known to be important in the immune system. However, this role in T lymphocyte development is entirely novel.

In the careful research, the team first showed that the Bcl11b gene was active only in T cells in the immune system and that its activity was needed at the earliest stages of production of T cells. When the team knocked out the Bcl11b gene, the mice produced no T cells.

"Remarkably, the mice lacking the Bcl11b gene produced a new type of immune system cell -- the Induced T to Natural Killer cells," explains Dr Pentao Liu, senior author on the project from the Wellcome Trust Sanger Institute. "This is the first time we have seen these cells and the first time a gene regulator like Bcl11b has been shown to carry out such an important role in T cells.

"Even more important, we can see that these reprogrammed killer cells can attack cancer cells, whether in test tubes or in mouse models."

The ITNK cells killed melanoma and lymphoma cells in experiment in test tubes and were much more efficient than unmodified Natural Killer cells in the mouse and in human.

But they worked also on cancers. When tumour cells were injected into mice they produced at least tenfold fewer tumour foci in the Bcl11b-deficient than in Bcl11b-competent mice.

"The reprogrammed killer cells were effective in preventing metastasis -- spread of the tumour in mice," explains Dr Francesco Colucci, from the University of Cambridge School of Clinical Medicine Dept of Obstetrics & Gynaecology. "The killing seems to be specific to the tumour cells and the normal cells seem to be spared.

"This is a really exciting development that could, if it can be transferred to humans, lead to development of new effective anticancer treatments. The results are stunning. One problem with cellular therapies is that one needs to produce large number of cells, something this work suggests could be done fairly easily with reprogrammed killer cells"

The team also looked at the effects of the cells in the medium term and showed that the ITNK cells continued to survive for at least three months.

The team also looked at the effects of the cells in the medium term and showed that the ITNK cells continued to survive for at least three months. Equally important, they could find no evidence of abnormality in the mice carrying ITNK cells. This suggests that ITNK cells do not indiscriminately kill normal cells or cause other damage, leading to optimism that ITNK cells might perform well in future therapies.


Story Source:

The above story is based on materials provided by Wellcome Trust Sanger Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Peng Li, Shannon Burke, Juexuan Wang, Xiongfeng Chen, Mariaestela Ortiz, Song-Choon Lee, Dong Lu, Lia Campos, David Goulding, Bee Ling Ng, Gordon Dougan, Brian Huntly, Bertie Gottgens, Nancy A. Jenkins, Neal G. Copeland, Francesco Colucci, and Pentao Liu. Reprogramming of T cells to Natural Killer-like cells upon Bcl11b deletion. Science, 2010; DOI: 10.1126/science.1188063

Cite This Page:

Wellcome Trust Sanger Institute. "Making cancer killers: Reprogramming immune system cells to produce natural killer cells for cancer." ScienceDaily. ScienceDaily, 11 June 2010. <www.sciencedaily.com/releases/2010/06/100610141042.htm>.
Wellcome Trust Sanger Institute. (2010, June 11). Making cancer killers: Reprogramming immune system cells to produce natural killer cells for cancer. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2010/06/100610141042.htm
Wellcome Trust Sanger Institute. "Making cancer killers: Reprogramming immune system cells to produce natural killer cells for cancer." ScienceDaily. www.sciencedaily.com/releases/2010/06/100610141042.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Costs Keep Mounting

Ebola Costs Keep Mounting

Reuters - Business Video Online (Sep. 23, 2014) The WHO has warned up to 20,000 people could be infected with Ebola over the next few weeks. As Sonia Legg reports, the implications for the West African countries suffering from the disease are huge. Video provided by Reuters
Powered by NewsLook.com
Ebola Cases Could Reach 1.4 Million Within 4 Months

Ebola Cases Could Reach 1.4 Million Within 4 Months

Newsy (Sep. 23, 2014) Health officials warn that without further intervention, the number of Ebola cases in Liberia and Sierra Leone could reach 1.4 million by January. Video provided by Newsy
Powered by NewsLook.com
WHO: Ebola Cases to Triple in Weeks Without Drastic Action

WHO: Ebola Cases to Triple in Weeks Without Drastic Action

AFP (Sep. 23, 2014) The number of Ebola infections will triple to 20,000 by November, soaring by thousands every week if efforts to stop the outbreak are not stepped up radically, the WHO warned in a study on Tuesday. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
5 Ways Men Can Prevent Most Heart Attacks

5 Ways Men Can Prevent Most Heart Attacks

Newsy (Sep. 23, 2014) No surprise here: A recent study says men can reduce their risk of heart attack by maintaining a healthy lifestyle, which includes daily exercise. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins