Featured Research

from universities, journals, and other organizations

Moon's interior has much higher water content than previously believed

Date:
June 14, 2010
Source:
Carnegie Institution
Summary:
Scientists have discovered a much higher water content in the moon's interior than previous studies. Their research suggests that the water was preserved from the hot magma that was present when the Moon began to form some 4.5 billion years ago, and that it is likely widespread in the moon's interior.

Scientists have discovered a much higher water content in the Moon's interior than previous studies. Their research suggests that the water was preserved from the hot magma that was present when the Moon began to form some 4.5 billion years ago, and that it is likely widespread in the Moon's interior.
Credit: iStockphoto/Rafael Pacheco

Scientists at the Carnegie Institution's Geophysical Laboratory, with colleagues, have discovered a much higher water content in the Moon's interior than previous studies. Their research suggests that the water was preserved from the hot magma that was present when the Moon began to form some 4.5 billion years ago, and that it is likely widespread in the Moon's interior.

Related Articles


The research is published in the online early edition of the Proceedings of the National Academy of Sciences the week of June 14.

"For over 40 years we thought the Moon was dry," remarked lead author Francis McCubbin. "Recently, scientists detected water from Apollo samples on the order of 46 parts per million. We studied two other Apollo samples and a lunar meteorite using secondary ion mass spectrometry (SIMS), which can detect elements in the parts per million range. We combined the measurements with models that characterize how the material crystallized as the Moon cooled. We found that the minimum water content ranged from 64 parts per billion to 5 parts per million -- at least two orders of magnitude greater than previous results."

The prevailing belief is that the Moon came from a giant-impact event, when a Mars-sized object hit the Earth and the ejected material coalesced into the Moon. From two of the samples, the Carnegie scientists determined that water was likely present very early in the formation history as the hot magma started to cool and crystallize. This result means that water is native to the Moon.

The previous studies showing water on the Moon analyzed volcanic glasses. These researchers looked within KREEP-rich rocks. KREEP comes from the last stages of crystallization. KREEP, rocks contain more potassium (K), rare Earth elements (REE), phosphorus (P), and other heat-producing elements such as uranium and thorium. "Since water is insoluble in the main silicates that crystallized, we believed that it should have concentrated in the KREEP," explained coauthor Andrew Steele. "That's why we selected it to analyze."

The researchers specifically studied hydroxyl, a compound with an oxygen atom bound with hydrogen, in the mineral apatite -- the only water-bearing mineral in the assemblage. After initial analyses, the scientists excluded one of the Apollo samples from further study because it was unlikely to yield good information about magmatic water content. They concentrated on the other Apollo sample and the lunar meteorite to determine water in the lunar interior.

"It is gratifying to see this proof of the OH contents in lunar apatite," remarked lunar scientist Bradley Jolliff of Washington University in St. Louis. "The concentrations are very low and, accordingly, they have been until recently nearly impossible to detect. We can now finally begin to consider the implications -- and the origin -- of water in the interior of the Moon."

This research was funded by NASA and Carnegie.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. Francis M. Mccubbin, Andrew Steele, Erik H. Hauri, Hanna Nekvasil, Shigeru Yamashita, and Russell J. Hemley. Nominally hydrous magmatism on the Moon. PNAS, June 14, 2010 DOI: 10.1073/pnas.1006677107

Cite This Page:

Carnegie Institution. "Moon's interior has much higher water content than previously believed." ScienceDaily. ScienceDaily, 14 June 2010. <www.sciencedaily.com/releases/2010/06/100614160151.htm>.
Carnegie Institution. (2010, June 14). Moon's interior has much higher water content than previously believed. ScienceDaily. Retrieved March 27, 2015 from www.sciencedaily.com/releases/2010/06/100614160151.htm
Carnegie Institution. "Moon's interior has much higher water content than previously believed." ScienceDaily. www.sciencedaily.com/releases/2010/06/100614160151.htm (accessed March 27, 2015).

Share This


More From ScienceDaily



More Space & Time News

Friday, March 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Supermassive Blackhole Detector Ready for Business

Supermassive Blackhole Detector Ready for Business

Reuters - Innovations Video Online (Mar. 25, 2015) Construction of the world&apos;s largest and most powerful observatory designed to detect and analyze gamma rays has been completed in Mexico. Gamma ray particles are considered the most energetic in the universe and scientists hope to use the observatory to learn more about the supernovas and black holes that produce them. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Rocket Blasts Off Carrying U.S. Air Force GPS Satellite

Rocket Blasts Off Carrying U.S. Air Force GPS Satellite

Reuters - News Video Online (Mar. 25, 2015) A U.S. Air Force GPS IIF-9 satellite launches aboard a United Launch Alliance Delta IV rocket into semi-synchronous orbit. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Opportunity's Marathon: The Mars Rover Just Keeps Going

Opportunity's Marathon: The Mars Rover Just Keeps Going

Newsy (Mar. 24, 2015) NASA&apos;s Opportunity Mars Rover finished a full marathon, making it the first human creation to do a full 26.2 miles on another planet. Video provided by Newsy
Powered by NewsLook.com
Twin Astronaut to Break NASA Record in Study

Twin Astronaut to Break NASA Record in Study

AP (Mar. 23, 2015) NASA astronaut Scott Kelly will be the first American to spend a year aboard the International Space Station in an experiment to test human endurance in space, while his twin brother&apos;s health is compared on Earth. (March 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins