Featured Research

from universities, journals, and other organizations

Heavy metal glass helps light go the distance

Date:
June 18, 2010
Source:
American Institute of Physics
Summary:
The fiber optic cable networks linking the world are an essential part of modern life. To keep up with ever-increasing demands for more bandwidth, scientists are working to improve the optical amplifiers that boost fiber optic signals across long distances. Optical amplifier research is focused on glass fibers doped with rare earth elements. The elements, such as erbium and ytterbium, amplify light signals when excited by a laser.

The fiber optic cable networks linking the world are an essential part of modern life. To keep up with ever-increasing demands for more bandwidth, scientists are working to improve the optical amplifiers that boost fiber optic signals across long distances.

Related Articles


Optical amplifier research is focused on glass fibers doped with rare earth elements. The elements, such as erbium and ytterbium, amplify light signals when excited by a laser. Many different combinations of elements have been tried in pursuit of amplifiers operating in different communication wavebands. However, obtaining effective signal amplifications in those rare earth ions is challenging and requires advanced materials and manufacturing. And to be commercially useful, the glass must be both stable and low-loss, requiring a little energy to boost signals.

An experimental glass developed by a team from Dalian Polytechnic University in China and the City University of Hong Kong solves some of these manufacturing problems. The researchers incorporated heavy metal and alkali/alkaline earth elements such as lead, bismuth, gallium, lithium, potassium, and barium in an oxide glass doped with trivalent samarium rare earth ion. Among oxide glasses, the maximum phonon energy of these materials is nearly the lowest, which may induce multi-channel fluorescence emissions and obvious enhancement of quantum efficiencies of samarium ions.

During laboratory tests, the samarium glass released infrared energy at a wavelength of 1185 nanometers -- within the window of fiber optical telecommunications -- among other wavelengths. The results, reported in the Journal of Applied Physics, published by the American Institute of Physics (AIP), indicate adding samarium to heavy metal gallate glass is worth exploring for use in both fiber optic networks and lasers.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hai Lin et al. Optical evaluation of multi-channel radiative transitions originating from 4G5/2 level of Sm3 in heavy-metal-gallate glasses. Journal of Applied Physics, 2010; [link]

Cite This Page:

American Institute of Physics. "Heavy metal glass helps light go the distance." ScienceDaily. ScienceDaily, 18 June 2010. <www.sciencedaily.com/releases/2010/06/100616090033.htm>.
American Institute of Physics. (2010, June 18). Heavy metal glass helps light go the distance. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2010/06/100616090033.htm
American Institute of Physics. "Heavy metal glass helps light go the distance." ScienceDaily. www.sciencedaily.com/releases/2010/06/100616090033.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Magnetic Motors, Not Cables, Power This Elevator

Magnetic Motors, Not Cables, Power This Elevator

Newsy (Nov. 28, 2014) Imagine an elevator without cables. ThyssenKrupp has drafted an elevator concept that would cruise on linear magnetic motors. Video provided by Newsy
Powered by NewsLook.com
NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins