Featured Research

from universities, journals, and other organizations

Extreme gravity effects revealed by oxygen for the first time in neutron star that 'eats' white dwarf

Date:
June 21, 2010
Source:
SRON Netherlands Institute for Space Research
Summary:
Astronomers have found blurred oxygen signatures in the X-rays from a neutron star that 'eats' a white dwarf. For the first time, the effects of extreme gravity are revealed by oxygen instead of iron atoms.

Neutron star 'eats' oxygen-rich white dwarf in a peculiar binary system.
Credit: ESA

Astronomers from SRON Netherlands Institute for Space Research and Utrecht University have found blurred oxygen signatures in the X-rays from a neutron star that 'eats' a white dwarf. For the first time the effects of extreme gravity are revealed by oxygen instead of iron atoms.

Although strong gravity near neutron stars and black holes has been studied before in a similar way, this result is unique. Until now, only blurred X-ray signatures of iron atoms have been observed in the X-rays from a neutron star. However, the characteristics of these so called 'iron lines' are disputed, which makes them less suited for extreme gravity field measurements.

The neutron star has been studied before but now Oliwia Madej, PhD student at Utrecht University and SRON Netherlands Institute for Space Research, has found blurred oxygen signatures in the X-rays from the star. She made this discovery in an archival observation performed by ESA's XMM-Newton observatory, which is equipped with the SRON reflection grating spectrometer (RGS) that is extemely sensitive in these particular wavelenghts. The research was carried out under supervision of SRON-researcher Peter Jonker.

The neutron star that the astronomers observed is part of a binary system called 4U 0614+091. In the binary, the neutron star and a white dwarf closely orbit each other in roughly 50 minutes. The white dwarf -- basically a burnt out star -- orbits at such a small distance from the neutron star that the oxygen-rich gas is pulled off the dwarf and starts closely swirling around the neutron star in a disk.

Extreme gravity

"Normally, hot oxygen atoms emit X-rays at a specific energy," Madej explains. "But because of the extreme gravity and the hot gas in the disk around the neutron star, this oxygen signature in the X-ray data is blurred." From the shape of the blur Madej tried to estimate the inner radius of the oxygen-rich disk around the neutron star, which should give an idea of the maximum radius that the neutron star could possibly have.

"Unfortunately, the current data are not yet good enough to give a definitive answer on the size of a neutron star," Peter Jonker admits. "To determine this in greater detail we need more observation time. And when we find the signature of iron molecules as well, we can now compare the characteristics of the two emission lines. Measured together, uncertainties about the measurements of the iron line can be taken away, which will guide the interpretation in other systems where only iron has been seen. All in all our observations are definitely an important step on the way towards a better understanding of the extreme conditions around and inside a neutron star."

Neutron stars -- shaped out of the collapsing cores of massive stars -- are the most compact objects with a surface in the universe. A neutron star has a slightly higher mass compared to a white dwarf, but the matter is squeezed into a ball of only 10-20 km in diameter. At these high densities, normal atoms cannot exist anymore. Anything denser would collapse into a black hole. Therefore, astronomers are very interested in the state of the matter inside a neutron star.

The results of the research appear in the Monthly Notices of the Royal Astronomical Society.


Story Source:

The above story is based on materials provided by SRON Netherlands Institute for Space Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. O.K. Madej, P.G. Jonker, A.C. Fabian, C. Pinto, F. Verbunt, J. de Plaa. A relativistically broadened O VIII Lyalpha line in the ultra-compact X-ray binary 4U 0614 091. Monthly Notices of the Royal Astronomical Society, 2010; (accepted for publication) [link]

Cite This Page:

SRON Netherlands Institute for Space Research. "Extreme gravity effects revealed by oxygen for the first time in neutron star that 'eats' white dwarf." ScienceDaily. ScienceDaily, 21 June 2010. <www.sciencedaily.com/releases/2010/06/100621084729.htm>.
SRON Netherlands Institute for Space Research. (2010, June 21). Extreme gravity effects revealed by oxygen for the first time in neutron star that 'eats' white dwarf. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2010/06/100621084729.htm
SRON Netherlands Institute for Space Research. "Extreme gravity effects revealed by oxygen for the first time in neutron star that 'eats' white dwarf." ScienceDaily. www.sciencedaily.com/releases/2010/06/100621084729.htm (accessed September 23, 2014).

Share This



More Space & Time News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's MAVEN Spacecraft Has Finally Reached Mars

NASA's MAVEN Spacecraft Has Finally Reached Mars

Newsy (Sep. 22, 2014) After a 10-month voyage through space, NASA's MAVEN spacecraft is now orbiting the Red Planet. Video provided by Newsy
Powered by NewsLook.com
Raw: SpaceX Rocket Carries 3-D Printer to Space

Raw: SpaceX Rocket Carries 3-D Printer to Space

AP (Sep. 22, 2014) A SpaceX Rocket launched from Cape Canaveral, carrying a custom-built 3-D printer into space. NASA envisions astronauts one day using the printer to make their own spare parts. (Sept. 22) Video provided by AP
Powered by NewsLook.com
SpaceX Cargo Ship Blasts Off Toward Space Station

SpaceX Cargo Ship Blasts Off Toward Space Station

AFP (Sep. 21, 2014) SpaceX's unmanned Dragon cargo ship blasts off toward the International Space Station, carrying a load of supplies and science experiments for the astronauts living there. Duration: 00:35 Video provided by AFP
Powered by NewsLook.com
NASA's MAVEN To Study Martian Atmosphere

NASA's MAVEN To Study Martian Atmosphere

Newsy (Sep. 21, 2014) NASA's Maven will soon give information that could explain what happened to Mars' atmosphere. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins