Featured Research

from universities, journals, and other organizations

'BC5' material shows superhard, superconducting potential

Date:
June 24, 2010
Source:
American Institute of Physics
Summary:
What could be better than diamond when it comes to a superhard material for electronics under extreme thermal and pressure conditions? Quite possibly BC5, a diamond-like material with an extremely high boron content that offers exceptional hardness and resistance to fracture, but unlike diamond, it is a superconductor rather than an insulator.

What could be better than diamond when it comes to a superhard material for electronics under extreme thermal and pressure conditions? Quite possibly BC5, a diamond-like material with an extremely high boron content that offers exceptional hardness and resistance to fracture, but unlike diamond, it is a superconductor rather than an insulator.

A research team in China studying BC5 describes its potential in the Journal of Applied Physics, which is published by the American Institute of Physics (AIP).

"Our current study reveals a great possibility that BC5 may possess both superhard and superconducting properties that are beneficial to the creation of multifunctional devices under extreme conditions," says Professor Yanming Ma, who led the research team at Jilin University.

At the heart of their study is the proposal that the synthesized BC5 adopts the diamond-[100] structure with special symmetry. Explains Ma, the BC5 structure has atomic packing of the form ABCABC… along the [100] crystallographic direction of diamond. This makes the deep understanding of this superhard and superconducting species possible. Ma believes that the outstanding mechanical and electrical properties of BC5 can be adapted to design new superconducting nano-electromechanical systems and high-pressure devices.

Quan Li, the study's first author, expects their findings to stimulate further research into other B-C-N compounds with superhard and superconducting properties.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Quan Li et al. Superhard and Superconducting Structures of BC5. Journal of Applied Physics, 2010; (forthcoming)

Cite This Page:

American Institute of Physics. "'BC5' material shows superhard, superconducting potential." ScienceDaily. ScienceDaily, 24 June 2010. <www.sciencedaily.com/releases/2010/06/100622095048.htm>.
American Institute of Physics. (2010, June 24). 'BC5' material shows superhard, superconducting potential. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2010/06/100622095048.htm
American Institute of Physics. "'BC5' material shows superhard, superconducting potential." ScienceDaily. www.sciencedaily.com/releases/2010/06/100622095048.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins