Featured Research

from universities, journals, and other organizations

Antioxidants may help prevent malaria complicaton that leads to learning impairment

Date:
June 28, 2010
Source:
University of Utah Health Sciences
Summary:
Using an experimental mouse model for malaria, scientists have discovered that adding antioxidant therapy to traditional antimalarial treatment may prevent long-lasting cognitive impairment in cerebral malaria.

Using an experimental mouse model for malaria, an international group of scientists has discovered that adding antioxidant therapy to traditional antimalarial treatment may prevent long-lasting cognitive impairment in cerebral malaria. Their findings were published online June 24, 2010, in the journal PLoS Pathogens.

Malaria, an infection caused by parasites that invade liver and red blood cells, is transmitted to humans by the female Anopheles mosquito. Malaria is one of the leading infectious diseases worldwide, affecting more than 400 million people and causing more than 2 million deaths each year, mainly among African children. Recently, the U.S. Centers for Disease Control and Prevention (CDC) issued a report on 11 laboratory-confirmed cases of malaria among U.S. emergency responders and those traveling in the United States from Haiti.

Cerebral malaria is a severe, potentially fatal neurologic complication of infection by the most-feared malarial parasite, Plasmodium falciparum. Recent studies of children with cerebral malaria indicate that cognitive deficits, which may impair memory, learning, language, and mathematical abilities, persist in many survivors even after the infection itself is cured.

"Cerebral malaria and its molecular mechanisms are under intense study, but the cognitive dysfunction that can persist in survivors in the aftermath of successful treatment has gone unrecognized until recently," says Guy A. Zimmerman M.D., professor and associate chair for research in the University of Utah School of Medicine's Department of Internal Medicine and a contributor to the study. "This complication may impose an enormous social and economic burden because of the number of people at risk for severe malaria worldwide. Our findings demonstrate that, by using experimental models of cerebral malaria in mice, we can explore mechanisms of cognitive damage and also examine potential treatments for reducing or preventing neurologic and cognitive impairment."

Zimmerman and colleagues in Brazil studied the persistence of cognitive damage in mice with documented cerebral malaria after cure of the acute parasitic disease with chloroquine, an antimalarial therapy. By administering a battery of behavioral tests to these mice, post-doctoral fellow Patricia Reis, Ph.D., determined that impairment in memory skills was still present 30 days after the initial malaria infection. Cognitive deficits that persist for years after the episode of cerebral malaria have also been reported in 11 percent to 28 percent of children who survive the infection.

"Although we believe that long-term cognitive dysfunction after cerebral malaria is initiated by injury to the brain during the initial period of untreated infection, it is possible that the mechanisms for persistent cognitive deficits are independent of those that cause neurological injury and death during acute cerebral malaria," says Zimmerman. "Future research is aimed at clarifying this point. However, we have been able to demonstrate that oxidative stress is present in the brains of mice infected with cerebral malaria."

Oxidative stress is a situation in which there is an imbalance between the production of reactive oxygen-containing molecules that can damage cell structures and the body's ability to detoxify these molecules or repair the resulting damage.

Zimmerman and his colleagues found increased production of molecules indicative of high oxidative stress in the brains of mice with cerebral malaria. They also found that treating mice with a combination of chloroquine and two antioxidant agents, desferoxamine and N-acetylcysteine, at the first signs of cerebral malaria prevented both inflammatory and vascular changes in the tissues of the brain, as well as the development of persistent cognitive damage. The addition of antioxidants did not diminish the efficacy of chloroquine in eliminating Plasmodia from the blood. Combination therapy with antioxidants and a newer antimalarial called artesunate was similarly effective in treating cerebral malaria and preventing subsequent cognitive impairment in mice.

Both desferoxamine and N-acetylcysteine have been used to treat other medical conditions in humans and their side effects are already known. The study authors suggest that these antioxidant drugs should be studied as additive therapy for antimalarial drugs in clinical trials in order to investigate their potential to reduce or prevent cognitive damage after cerebral malaria.

"Our findings are exciting because the clinical implications may not be limited to cerebral malaria," says Zimmerman. "Oxidative stress is thought to be an important mechanism in brain injury in other types of severe infection and in chronic non-infectious conditions such as neurodegenerative diseases. Antioxidant treatment may be a successful therapeutic strategy for controlling long-lasting neurological consequences in these conditions, as well."

This new study stems from a long-term collaboration between Zimmerman and Dr. Hugo Castro-Faria-Neto and his group at the Oswaldo Cruz Foundation, a major Brazilian institute devoted to the study, prevention, and treatment of infectious diseases. The Brazilian research team also included neurobiologist João Quevedo and co-workers at the University of Extremo Sul Catarinense in Santa Catarina, Brazil.


Story Source:

The above story is based on materials provided by University of Utah Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Reis et al. Cognitive Dysfunction Is Sustained after Rescue Therapy in Experimental Cerebral Malaria, and Is Reduced by Additive Antioxidant Therapy. PLoS Pathogens, 2010; 6 (6): e1000963 DOI: 10.1371/journal.ppat.1000963

Cite This Page:

University of Utah Health Sciences. "Antioxidants may help prevent malaria complicaton that leads to learning impairment." ScienceDaily. ScienceDaily, 28 June 2010. <www.sciencedaily.com/releases/2010/06/100625131416.htm>.
University of Utah Health Sciences. (2010, June 28). Antioxidants may help prevent malaria complicaton that leads to learning impairment. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2010/06/100625131416.htm
University of Utah Health Sciences. "Antioxidants may help prevent malaria complicaton that leads to learning impairment." ScienceDaily. www.sciencedaily.com/releases/2010/06/100625131416.htm (accessed July 30, 2014).

Share This




More Health & Medicine News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) — Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) — Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) — At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Generics Eat Into Pfizer's Sales

Generics Eat Into Pfizer's Sales

Reuters - Business Video Online (July 29, 2014) — Pfizer, the world's largest drug maker, cut full-year revenue forecasts because generics could cut into sales of its anti-arthritis drug, Celebrex. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins