Featured Research

from universities, journals, and other organizations

Simulation-based matchmaking for shape memory alloys

Date:
July 6, 2010
Source:
Ruhr-Universitaet-Bochum
Summary:
A new shape memory alloy with up to now unprecedented functional stability was developed by researchers in Germany, the U.S., and Japan. Based on a theoretical prediction, they used combinatorial materials science methods -- so-called materials libraries -- for a targeted search of optimized alloy compositions. The result consists of four components: titanium, nickel, copper and palladium. From the new material, the researchers expect a stable shape memory effect and improved lifetime -- for example, in for applications in medical devices such as stents.

A new shape memory alloy with up to now unprecedented functional stability was developed by researchers from the Institute for Materials at the Ruhr-Universitδt Bochum in cooperation with researchers from the USA and Japan. Based on a theoretical prediction, they used combinatorial materials science methods, i.e. so-called materials libraries, for a targeted search of optimized alloy compositions. The result consists of four components: titanium, nickel, copper and palladium. From the new material, the researchers expect a stable shape memory effect and improved lifetime, e.g. for applications in medical devices such as stents.

Related Articles


The scientists report their results in the noted journal Advanced Functional Materials, which selected their contribution as cover story.

Shape memory alloys

Shape memory alloys (SMAs) are materials that after being deformed mechanically can return to their original shape upon heating (shape memory effect) and/or allow for "elastic" strains up to 10 % (superelasticity). Those remarkable effects are based on a reversible martensitic phase transformation: a change in the crystal lattice as a function of temperature or stress. However, such changes do not leave the material untouched. Defects are formed during cyclic deformations, which accumulate and lead to decreasing shape memory properties. "The defects originate from the interface between the high-temperature phase (austenite) and the low-temperature phase (martensite) as a result of the crystallographic incompatibility," explains Robert Zarnetta from the Materials Research Department at the RUB.

Four matching partners

Theoretical calculations from the co-workers in the USA predicted that the incompatibility can vanish for alloys with special lattice parameters, such that the high-temperature and the low-temperature phase are compatible. As optimal partners for such an alloy, titanium, nickel, copper and palladium were identified by theory. The successful experimental "matchmaking" was realized by using thin film materials libraries, which enabled the screening of a large portion of the four component (quaternary) composition space using dedicated high-throughput characterization tools. "To find or optimize the special composition in the quaternary alloy system using conventional methods would have been extremely challenging," explains Prof. Dr. Alfred Ludwig (Chair Materials for Microtechnology) and thus highlights the advantage of the combinatorial materials science approach.

Compatible crystal lattices promote stability

Next to the discovery of the special alloy composition, the scientists also determined the underlying composition-structure-property relationship, which was subsequently used to successfully transfer the thin film results to bulk material. Thus, the fundamental relation between the crystal structure of a shape memory alloy and its functional stability could be proven for the first time. "An improved compatibility of the high- and low-temperature crystal lattice results in improved functional stability" summarized Robert Zarnetta , going on to explain "that this relation could only be discovered by bridging the fields of combinatorial SMA thin film and the conventional bulk materials development."

Collaborative Research Center and Research Department

The results were conducted, based on the work within the collaborative research center "SFB 459," at the Chairs "Materials for Microtechnology" (Prof. Dr.-Ing. Alfred Ludwig, Institute for Materials) and "Materials Science and Engineering" (Prof. Dr.-Ing. Gunther Eggeler, Institute for Materials) and in cooperation with the Materials Research Department at the RUB.


Story Source:

The above story is based on materials provided by Ruhr-Universitaet-Bochum. Note: Materials may be edited for content and length.


Journal Reference:

  1. Robert Zarnetta, Ryota Takahashi, Marcus L. Young, Alan Savan, Yasubumi Furuya, Sigurd Thienhaus, Burkhard Maaί, Mustafa Rahim, Jan Frenzel, Hayo Brunken, Yong S. Chu, Vijay Srivastava, Richard D. James, Ichiro Takeuchi, Gunther Eggeler, Alfred Ludwig. Identification of Quaternary Shape Memory Alloys with Near-Zero Thermal Hysteresis and Unprecedented Functional Stability. Advanced Functional Materials, 2010; 20 (12): 1917 DOI: 10.1002/adfm.200902336

Cite This Page:

Ruhr-Universitaet-Bochum. "Simulation-based matchmaking for shape memory alloys." ScienceDaily. ScienceDaily, 6 July 2010. <www.sciencedaily.com/releases/2010/07/100701081853.htm>.
Ruhr-Universitaet-Bochum. (2010, July 6). Simulation-based matchmaking for shape memory alloys. ScienceDaily. Retrieved January 24, 2015 from www.sciencedaily.com/releases/2010/07/100701081853.htm
Ruhr-Universitaet-Bochum. "Simulation-based matchmaking for shape memory alloys." ScienceDaily. www.sciencedaily.com/releases/2010/07/100701081853.htm (accessed January 24, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, January 24, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) — In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) — Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) — The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com
Analysis: NTSB Wants Better Black Boxes

Analysis: NTSB Wants Better Black Boxes

AP (Jan. 22, 2015) — NTSB investigators recommended Thursday that long-distance passenger planes carry improved technology to allow them to be found more easily in a crash, as well as include enhanced cockpit recording technology. (Jan. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins