Featured Research

from universities, journals, and other organizations

New target for treatment of advanced prostate cancer

Date:
July 7, 2010
Source:
University of North Carolina School of Medicine
Summary:
A recent study provides demonstrates that expression of one of a group of genes found only in humans and non-human primates can promote androgen receptor activity in concert with other proteins called coregulators.

In its early stages, prostate cancer requires androgens (hormones that promote the development and maintenance of male sex characteristics) for growth, and current first-line therapies target the receptor for these hormones to slow cancer's development and spread.

However, advanced prostate cancers are often androgen-independent, meaning that androgen-blocking therapies are ineffective.

Scientists aren't sure how this shift occurs as prostate cancer advances. One idea is that prostate cancer cells acquire the ability to make their own androgen. Another says that the androgen receptor that is known to stimulate tumor growth can still be active even when the hormone is not present. Most likely, both are important.

A recent study by UNC researchers, published in the Journal of Biological Chemistry, provides evidence for the second theory, demonstrating that expression of one of a group of genes found only in humans and non-human primates can promote androgen receptor activity in concert with other proteins called coregulators.

One of a group of MAGE genes, so named because they were originally identified in melanoma, called MAGE-11 interacts with another protein, called p300, to provide the cancer cells with a way to enhance androgen receptor signaling and promote tumor growth, even when patients are undergoing androgen deprivation therapy.

According to team leader Elizabeth M. Wilson, PhD, professor of pediatrics and biochemistry and biophysics at UNC-Chapel Hill, "We found that a small portion of the androgen receptor interacts with the MAGE-11 molecule which serves as a bridge to p300, a strong histone modifying enzyme that increases androgen receptor activity. This is exciting because it shows how the cancer cells have developed a way to boost androgen receptor activity, even in the absence or at low levels of the hormone that binds the androgen receptor."

Wilson, who is also a UNC Lineberger member, goes on to explain that understanding this mechanism opens the door to additional targets for new therapies and broader clinical applications of new drugs.

"The MAGE-11 molecule is a promising target for shutting down androgen receptor activity that promotes the growth of cancer cells," she adds.

Other team members include Emily Askew, a recent PhD graduate of the Toxicology Curriculum at UNC, Suxia Bai, PhD, a former post-doctoral fellow in the Wilson laboratory, and Amanda Blackwelder, a research specialist.

The research was supported by grants from the U.S. Department of Defense, the National Institutes of Health and the U.S. Public Health Service.


Story Source:

The above story is based on materials provided by University of North Carolina School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of North Carolina School of Medicine. "New target for treatment of advanced prostate cancer." ScienceDaily. ScienceDaily, 7 July 2010. <www.sciencedaily.com/releases/2010/07/100706171125.htm>.
University of North Carolina School of Medicine. (2010, July 7). New target for treatment of advanced prostate cancer. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2010/07/100706171125.htm
University of North Carolina School of Medicine. "New target for treatment of advanced prostate cancer." ScienceDaily. www.sciencedaily.com/releases/2010/07/100706171125.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Obama Orders Military Response to Ebola

Obama Orders Military Response to Ebola

AP (Sep. 16, 2014) Calling the Ebola outbreak in West Africa a potential threat to global security, President Barack Obama is ordering 3,000 U.S. military personnel to the stricken region amid worries that the outbreak is spiraling out of control. (Sept. 16) Video provided by AP
Powered by NewsLook.com
UN: 20,000 Could Be Infected With Ebola by Year End

UN: 20,000 Could Be Infected With Ebola by Year End

AFP (Sep. 16, 2014) Nearly $1.0 billion dollars is needed to fight the Ebola outbreak raging in west Africa, the United Nations say, warning that 20,000 could be infected by year end. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Obama: Ebola Outbreak Threat to Global Security

Obama: Ebola Outbreak Threat to Global Security

AP (Sep. 16, 2014) President Obama is ordering U.S. military personnel to West Africa to deal with the Ebola outbreak, which is he calls a potential threat to global security. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins