Featured Research

from universities, journals, and other organizations

Fibers that can hear and sing: Fibers created that detect and produce sound

Date:
July 12, 2010
Source:
Massachusetts Institute of Technology
Summary:
Scientists have announced a new milestone on the path to functional fibers: fibers that can detect and produce sound. Applications could include clothes that are themselves sensitive microphones, for capturing speech or monitoring bodily functions, and tiny filaments that could measure blood flow in capillaries or pressure in the brain.

MIT researchers have demonstrated that they can manufacture acoustic fibers with flat surfaces, like those shown here, as well as fibers with circular cross sections. The flat fibers could prove particularly useful in acoustic imaging devices.
Credit: Research Laboratory of Electronics at MIT/Greg Hren Photograph

For centuries, "man-made fibers" meant the raw stuff of clothes and ropes; in the information age, it's come to mean the filaments of glass that carry data in communications networks. But to Yoel Fink, an Associate professor of Materials Science and principal investigator at MIT's Research Lab of Electronics, the threads used in textiles and even optical fibers are much too passive. For the past decade, his lab has been working to develop fibers with ever more sophisticated properties, to enable fabrics that can interact with their environment.

In the August issue of Nature Materials, Fink and his collaborators announce a new milestone on the path to functional fibers: fibers that can detect and produce sound. Applications could include clothes that are themselves sensitive microphones, for capturing speech or monitoring bodily functions, and tiny filaments that could measure blood flow in capillaries or pressure in the brain. The paper, whose authors also include Shunji Egusa, a former postdoc in Fink's lab, and current lab members Noémie Chocat and Zheng Wang, appeared on Nature Materials' website on July 11.

Ordinary optical fibers are made from a "preform," a large cylinder of a single material that is heated up, drawn out, and then cooled. The fibers developed in Fink's lab, by contrast, derive their functionality from the elaborate geometrical arrangement of several different materials, which must survive the heating and drawing process intact.

The heart of the new acoustic fibers is a plastic commonly used in microphones. By playing with the plastic's fluorine content, the researchers were able to ensure that its molecules remain lopsided -- with fluorine atoms lined up on one side and hydrogen atoms on the other -- even during heating and drawing. The asymmetry of the molecules is what makes the plastic "piezoelectric," meaning that it changes shape when an electric field is applied to it.

In a conventional piezoelectric microphone, the electric field is generated by metal electrodes. But in a fiber microphone, the drawing process would cause metal electrodes to lose their shape. So the researchers instead used a conducting plastic that contains graphite, the material found in pencil lead. When heated, the conducting plastic maintains a higher viscosity -- it yields a thicker fluid -- than a metal would.

Not only did this prevent the mixing of materials, but, crucially, it also made for fibers with a regular thickness. After the fiber has been drawn, the researchers need to align all the piezoelectric molecules in the same direction. That requires the application of a powerful electric field -- 20 times as powerful as the fields that cause lightning during a thunderstorm. Anywhere the fiber is too narrow, the field would generate a tiny lightning bolt, which could destroy the material around it.

Despite the delicate balance required by the manufacturing process, the researchers were able to build functioning fibers in the lab. "You can actually hear them, these fibers," says Chocat, a graduate student in the materials science department. "If you connected them to a power supply and applied a sinusoidal current" -- an alternating current whose period is very regular -- "then it would vibrate. And if you make it vibrate at audible frequencies and put it close to your ear, you could actually hear different notes or sounds coming out of it." For their Nature Materials paper, however, the researchers measured the fiber's acoustic properties more rigorously. Since water conducts sound better than air, they placed it in a water tank opposite a standard acoustic transducer, a device that could alternately emit sound waves detected by the fiber and detect sound waves emitted by the fiber.

In addition to wearable microphones and biological sensors, applications of the fibers could include loose nets that monitor the flow of water in the ocean and large-area sonar imaging systems with much higher resolutions: A fabric woven from acoustic fibers would provide the equivalent of millions of tiny acoustic sensors.

Zheng, a research scientist in Fink's lab, also points out that the same mechanism that allows piezoelectric devices to translate electricity into motion can work in reverse. "Imagine a thread that can generate electricity when stretched," he says.

Ultimately, however, the researchers hope to combine the properties of their experimental fibers in a single fiber. Strong vibrations, for instance, could vary the optical properties of a reflecting fiber, enabling fabrics to communicate optically.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by Larry Hardesty. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink. Multimaterial piezoelectric fibres. Nature Materials, 11 July 2010 DOI: 10.1038/nmat2792

Cite This Page:

Massachusetts Institute of Technology. "Fibers that can hear and sing: Fibers created that detect and produce sound." ScienceDaily. ScienceDaily, 12 July 2010. <www.sciencedaily.com/releases/2010/07/100712115106.htm>.
Massachusetts Institute of Technology. (2010, July 12). Fibers that can hear and sing: Fibers created that detect and produce sound. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2010/07/100712115106.htm
Massachusetts Institute of Technology. "Fibers that can hear and sing: Fibers created that detect and produce sound." ScienceDaily. www.sciencedaily.com/releases/2010/07/100712115106.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) — A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins