Featured Research

from universities, journals, and other organizations

New generation of biological scaffolds

Date:
July 14, 2010
Source:
Biotechnology and Biological Sciences Research Council (BBSRC)
Summary:
Scientists in the UK are conducting research into how biological scaffolding can pave the way for off- the-shelf tissue transplants.

Professor John Fisher from The University of Leeds is presenting at the UK National Stem Cell Network Annual Science Meeting in Nottingham about his team's research into how biological scaffolding will pave the way for off- the-shelf tissue transplants.

Professor Fisher and his colleague Professor Eileen Ingham have been working on ways of producing biological scaffolds, derived from natural human or animal tissues such as vascular patches, meniscus (knee cartilage), and tendons that will not be rejected by a patient's immune system and can be repaired and renewed like normal tissue.

The technique developed by the Leeds group removes the cells from natural tissues to leave a biological scaffold which can be regenerated by the patient's own cells. Scaffolds derived from human donor tissue are being developed by the NHS Blood & Transplant Tissue Services, while scaffolds developed from animal tissues are being developed and commercialised by Tissue Regenix Group PLC.

Professor Fisher said: "If you take a natural tissue and strip off all of the donor's cells you're left with a biological scaffold made mostly of a protein called collagen, which is compatible with the patient receiving the scaffold. That scaffold is good from an engineering perspective because it's strong, flexible and retains the properties of the natural tissue. It also has the appropriate shape and size, and from a biological perspective is good because a patient's cells can bind to it and repopulate it easily."

Because a patient's own cells can populate the new biological scaffolds, they are accepted by the immune system and can be repaired like normal tissue.. There is a significant advantage from this technique because of the longevity of the transplant compared to other previously developed techniques. Chemically treated and strengthened prosthetic heart valves from pigs, for example, have been in used in human transplants for more than a decade, but the chemical process which stops them from being rejected by the patient's immune system also leaves them lifeless and inert. Because they cannot be repaired like living tissues, these prosthetic valves are degraded over time and need to be replaced frequently.

Professor Fisher continued: "These new biological scaffolds will provide off-the- shelf tissues for surgeons for repairing blood vessels after surgery for blocked arteries, for repairing meniscus after sporting injuries and cartilage tears, for repairing torn ligaments or tendons and for heart valve repair or replacement.

This research is being developed in conjunction with the NHS Blood & Transplant Tissue Services and with Tissue Regenix Group PLC, a company set up by researchers to bring new biological scaffolds to market. Funding for the research in this area also came via the Engineering and Physical Sciences Research Council (EPSRC), the Biotechnology and Biological Sciences Research Council (BBSRC), the Children's Heart Surgery Fund, the Department of Health and the Wellcome Trust.


Story Source:

The above story is based on materials provided by Biotechnology and Biological Sciences Research Council (BBSRC). Note: Materials may be edited for content and length.


Cite This Page:

Biotechnology and Biological Sciences Research Council (BBSRC). "New generation of biological scaffolds." ScienceDaily. ScienceDaily, 14 July 2010. <www.sciencedaily.com/releases/2010/07/100713191219.htm>.
Biotechnology and Biological Sciences Research Council (BBSRC). (2010, July 14). New generation of biological scaffolds. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2010/07/100713191219.htm
Biotechnology and Biological Sciences Research Council (BBSRC). "New generation of biological scaffolds." ScienceDaily. www.sciencedaily.com/releases/2010/07/100713191219.htm (accessed September 30, 2014).

Share This



More Plants & Animals News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
Dolphins Might Use Earth's Magnetic Field As A GPS

Dolphins Might Use Earth's Magnetic Field As A GPS

Newsy (Sep. 30, 2014) A study released Monday suggests dolphins might be able to sense the Earth's magnetic field and possibly use it as a means of navigation. Video provided by Newsy
Powered by NewsLook.com
How To Battle Stink Bug Season

How To Battle Stink Bug Season

Newsy (Sep. 30, 2014) Homeowners in 33 states grapple with stink bugs moving indoors at this time of year. Here are a few tips to avoid stink bug infestations. Video provided by Newsy
Powered by NewsLook.com
California University Designs Sustainable Winery

California University Designs Sustainable Winery

Reuters - US Online Video (Sep. 27, 2014) Amid California's worst drought in decades, scientists at UC Davis design a sustainable winery that includes a water recycling system. Vanessa Johnston reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins