Featured Research

from universities, journals, and other organizations

Cancer drugs may help stop major parasite

Date:
July 16, 2010
Source:
Washington University School of Medicine
Summary:
A parasite estimated to afflict as many as 12 million people worldwide relies on a family of genes that should make it vulnerable to compounds developed to treat cancer and other disorders, researchers have found.

Scientists at Washington University School of Medicine in St. Louis recently showed that when a key protein was genetically disabled, the parasite Leishmania couldn't start infections in cell cultures and animals. Parasites in this picture have been stained so that compounds known as polyphosphates appear yellow. The structures where the parasite normally stores these compounds are misshapen and empty in mutant parasites that lack the TOR kinase 3 protein.
Credit: Washington University School of Medicine in St. Louis

A parasite estimated to afflict as many as 12 million people worldwide relies on a family of genes that should make it vulnerable to compounds developed to treat cancer and other disorders, researchers at Washington University School of Medicine in St. Louis have found.

Related Articles


Scientists searched the genome of the parasite Leishmania to determine that it has three kinds of TOR kinases, proteins that are linked to cell growth and cancer and have been longstanding targets for drug development. When they removed the proteins individually, they found that all three were critical either to the parasite's ability to survive or its ability to cause infections.

"If we can hit any of these proteins with a drug that will inhibit them, we should be able to strike a significant blow against Leishmania," says senior author Stephen Beverley, PhD, the Marvin A. Brennecke Professor and head of Molecular Microbiology. "Given the numerous inhibitors already available, I think there's a pretty good chance that we'll be able to identify a compound that specifically inhibits one of Leishmania's TOR kinases."

The finding appears online in The Proceedings of the National Academy of Sciences.

Infection with the Leishmania parasite, or leishmaniasis, is mainly spread by sand fly bites and is a major public health problem in Asia, Africa, the Middle East and other parts of the developing world. Symptoms include large skin lesions, fever, swelling of the spleen and liver, and, in more serious forms of the disease, disfigurement. The most severe form of leishmaniasis, a condition sometimes called black fever, is fatal if left untreated and is estimated to kill more humans than any other parasite except Plasmodium falciparum, the malaria parasite.

Mammals have only one TOR kinase protein, and drug developers have targeted it to block immune system rejection of transplanted organs, to treat certain forms of cancer and, more recently, to prevent some age-related illnesses.

When Beverley's lab separately deleted each of the first two TOR kinases from Leishmania's genome, the parasite could not survive. Deleting the third TOR kinase led to a parasite that survived the initial stage of its lifecycle, which normally occurs in sand flies. But the modified parasite died when it tried to infect animals or cell cultures.

Closer study of how loss of TOR kinase 3 affected Leishmania revealed that structures inside the parasite known as acidocalcisomes were defective. They were unusual in size and shape and did not carry their usual cargo, high-energy molecules known as polyphosphates.

The study provides the first proof that acidocalcisomes are essential for infection. The properties of the parasite with mutated TOR kinase 3 confirmed prior research that suggested the acidocalcisome may help cells regulate the flow of fluids across the cell membrane or cope with stress and loss of access to the sugar glucose.

"Entry into the host is one of the most stressful times in a parasite's lifecycle," says first author Luciana Madeira da Silva, PhD, a former postdoctoral researcher. "Having fewer ways to cope with stress at that point could be a real problem for Leishmania."

Beverley has begun working with another group that repurposes human TOR kinase inhibitors, adapting them for other uses. They plan to see if existing drugs might disable or kill the Leishmania parasite by inhibiting one of its three TOR kinases.

Funding from the National Institutes of Health and the Washington University Infectious Diseases Scholar Program supported this research.


Story Source:

The above story is based on materials provided by Washington University School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Madeira da Silva et al. Expansion of the target of rapamycin (TOR) kinase family and function in Leishmania shows that TOR3 is required for acidocalcisome biogenesis and animal infectivity. Proceedings of the National Academy of Sciences, 2010; 107 (26): 11965 DOI: 10.1073/pnas.1004599107

Cite This Page:

Washington University School of Medicine. "Cancer drugs may help stop major parasite." ScienceDaily. ScienceDaily, 16 July 2010. <www.sciencedaily.com/releases/2010/07/100716125839.htm>.
Washington University School of Medicine. (2010, July 16). Cancer drugs may help stop major parasite. ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2010/07/100716125839.htm
Washington University School of Medicine. "Cancer drugs may help stop major parasite." ScienceDaily. www.sciencedaily.com/releases/2010/07/100716125839.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) — The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins