Featured Research

from universities, journals, and other organizations

Math model of colon inflammation singles out dangerous immune cells

Date:
July 23, 2010
Source:
Virginia Tech
Summary:
Scientists have constructed a mathematical and computational model of inflammatory bowel disease that allows researchers to simulate the cellular and molecular changes underlying chronic inflammation in humans. The model allows scientists to explore different interactions of cells in the immune system, check how these cells are linked to inflammation in the colon, and identify intervention points to perhaps stop the disease in its tracks.

Scientists at the Virginia Bioinformatics Institute (VBI) at Virginia Tech have constructed a mathematical and computational model of inflammatory bowel disease that allows researchers to simulate the cellular and molecular changes underlying chronic inflammation in humans. The model allows scientists to explore different interactions of cells in the immune system, check how these cells are linked to inflammation in the colon, and identify intervention points to perhaps stop the disease in its tracks.

The work appears in the Journal of Theoretical Biology.

More than 1 million people are affected by inflammatory bowel disease in North America alone and direct healthcare expenses for inflammatory bowel disease in the United States are estimated at more than $15 billion annually. What the scientists have been able to do is construct a set of mathematical equations that describe the movement of different cells in the immune system and how these cells interact with different bacteria that can trigger disease in the colon.

Said Josep Bassaganya-Riera, associate professor at VBI, "In collaboration with the Network Dynamics and Simulation Science Laboratory at VBI, researchers in the Nutritional Immunology and Molecular Medicine group have developed a model of inflammation that allows us to investigate in silico the immunological changes that occur when inflammatory bowel disease takes hold of otherwise healthy gastrointestinal tissue."

Inflammatory bowel disease starts when the gut initiates an abnormal immune response to some of the one hundred trillion or so bacteria that come into contact with the colon of the human body. In some cases, this response can lead to inflammatory lesions and ulcerations in the cells lining the colon through which bacteria can invade the tissue. This invasion can lead to recurring inflammation, diarrhea, rectal bleeding, and malnutrition, the tell-tale symptoms of inflammatory bowel disease and infections with some gastroenteric pathogens.

Said Stephen Eubank, deputy director of the Network Dynamics and Simulation Science Laboratory at VBI and one of the authors on the paper, "One thing we are trying to understand with this research is how your immune system lives in peace with the commensal, peace-loving bacteria, yet can still mount a rapid, controlled defense against unfriendly bacteria. We are also interested in what happens when parts of the immune system do not behave as expected, for example when otherwise friendly immune cells attack healthy tissue." Remarked Eubank: "The computational model described in this paper allows scientists to examine these types of events in considerable detail but we are already working on a next-generation model that will allow us to take an even bigger step. Our goal is to develop an agent-based model in a petascale computing environment that will be able to represent hundreds of millions of cells involved in this type of immune response."

Previous studies have shown that in healthy individuals the detrimental immune response is avoided by the presence of regulatory immune cells that inhibit the inflammatory pathway. Added Bassaganya-Riera, "Our model allows researchers to identify those components of the inflammatory pathway that allow regulatory mechanisms to be overridden and immune-mediated disease to proceed."

The mathematical and computational approach of the scientists has already revealed one of the weak links in the complex network of interactions. Said Katherine Wendelsdorf, a graduate student in the Network Dynamics and Simulation Science Laboratory at VBI and lead author of the paper, "Our math analyses revealed a specific type of immune cell, a pro-inflammatory macrophage, to be one of the main culprits for unregulated inflammation in inflammatory bowel disease."

When conditions were simulated in which M1 or classically activated macrophages were removed from the site of infection, a drastic decrease in the inflammatory response linked to disease was observed in the simulations. This observation suggests that M1 macrophages are key targets for intervention strategies to fight mucosal inflammation.

Said Bassaganya-Riera, "Modeling approaches cannot replace experimentation but they can provide a framework for organizing existing data, generating novel mechanistic hypotheses and deciding where to focus key validation experiments. Future efforts in our group will focus on modeling immunity to enteric pathogens."

The research was funded by the National Institutes of Health (MIDAS project grants 5U01 GM070694-05 and 2U01 GM070694-7).


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Journal Reference:

  1. Wendelsdorf et al. Model of colonic inflammation: Immune modulatory mechanisms in inflammatory bowel disease. Journal of Theoretical Biology, 2010; 264 (4): 1225 DOI: 10.1016/j.jtbi.2010.03.027

Cite This Page:

Virginia Tech. "Math model of colon inflammation singles out dangerous immune cells." ScienceDaily. ScienceDaily, 23 July 2010. <www.sciencedaily.com/releases/2010/07/100722181313.htm>.
Virginia Tech. (2010, July 23). Math model of colon inflammation singles out dangerous immune cells. ScienceDaily. Retrieved September 15, 2014 from www.sciencedaily.com/releases/2010/07/100722181313.htm
Virginia Tech. "Math model of colon inflammation singles out dangerous immune cells." ScienceDaily. www.sciencedaily.com/releases/2010/07/100722181313.htm (accessed September 15, 2014).

Share This



More Health & Medicine News

Monday, September 15, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Respiratory Virus Spreads To Northeast, Now In 21 States

Respiratory Virus Spreads To Northeast, Now In 21 States

Newsy (Sep. 14, 2014) The respiratory virus Enterovirus D68, which targets children, has spread from the Midwest to 21 states. Video provided by Newsy
Powered by NewsLook.com
Shocker: Journalists Are Utterly Addicted To Coffee

Shocker: Journalists Are Utterly Addicted To Coffee

Newsy (Sep. 13, 2014) A U.K. survey found that journalists consumed the most amount of coffee, but that's only the tip of the coffee-related statistics iceberg. Video provided by Newsy
Powered by NewsLook.com
Contagious Respiratory Illness Continues to Spread Across U.S.

Contagious Respiratory Illness Continues to Spread Across U.S.

Reuters - US Online Video (Sep. 12, 2014) Hundreds of children in several states have been stricken by a serious respiratory illness that is spreading across the U.S. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Ebola Batters Sierra Leone Economy Too

Ebola Batters Sierra Leone Economy Too

Reuters - Business Video Online (Sep. 12, 2014) The World Health Organisation warns that local health workers in West Africa can't keep up with Ebola - and among those countries hardest hit by the outbreak, the economic damage is coming into focus, too. As David Pollard reports, Sierra Leone admits that growth in one of the poorest economies in the region is taking a beating. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins