Featured Research

from universities, journals, and other organizations

One molecule, many more insulin-producing cells to treat diabetes

Date:
July 29, 2010
Source:
University of Pittsburgh Schools of the Health Sciences
Summary:
With a single stimulatory molecule, human insulin-producing beta cell replication can be sustained for at least four weeks in a mouse model of diabetes, according to new research. Scientists also found several cocktails of molecules that drive human beta cells to replicate, as well as important differences between mouse and human beta cells that could influence how these approaches are best used to treat diabetes.

With a single stimulatory molecule, human insulin-producing beta cell replication can be sustained for at least four weeks in a mouse model of diabetes, according to researchers at the University of Pittsburgh School of Medicine in Diabetes, a journal of the American Diabetes Association.

Related Articles


They also found several cocktails of molecules that drive human beta cells to replicate, as well as important differences between mouse and human beta cells that could influence how these approaches are best used to treat diabetes, which is caused by insufficient insulin production leading to abnormal blood sugar levels.

"Our team was the first to show that adult human beta cells can be induced to proliferate or grow at substantial rates, which no one thought possible before," said senior author Andrew F. Stewart, M.D., professor of medicine and chief of the Division of Endocrinology and Metabolism, Pitt School of Medicine. "Now our effort has been to unravel these regulatory pathways to find the most effective strategy that will allow us to treat -- and perhaps cure -- diabetes by making new insulin-producing cells."

In a series of experiments, lead author Nathalie M. Fiaschi-Taesch, Ph.D., assistant professor of endocrinology, and the team discovered that combining elevated amounts of the regulatory molecules cdk4 or cdk6 with a variety of D-cyclin proteins, particularly cyclin D3, stimulates human beta cell replication in test tubes.

"We didn't expect cyclin D3 to ramp up beta cell replication so strongly when it was used with either cdk4 or cdk6," Dr. Fiaschi-Taesch said. "There was no known role for cyclin D3 in human beta cell physiology."

Cyclin D2 is present in and essential for rodent beta cell replication and function, but the team showed that molecule is barely detectable in human cells, and beta cell replication could be sustained for at least four weeks in a model in which mice were transplanted with human beta cells engineered to overproduce cdk6. Blood sugar normalized in the diabetic mice transplanted with surprisingly small numbers of human beta cells, indicating that the cells functioned properly to produce needed insulin.

Mice don't appear to make cdk6 naturally, but they do have cdk4 and cyclins D1 and D2, so standard rodent studies of beta replication might have led scientists to pursue the wrong molecules in their quest to stimulate human beta cell replication, Dr. Stewart noted.

He and his colleagues continue to explore many other regulatory proteins that could play a role in encouraging or thwarting beta cell replication.

Other authors of the paper include Fatimah Salim, Jeffrey Kleinberger, Ronnie Troxell, Karen Selk, Edward Cherok, Karen K. Takane, Ph.D., and Donald K. Scott, Ph.D., all of the Division of Endocrinology and Metabolism, Department of Medicine, Pitt School of Medicine; and Irene Cozar-Castellano, Ph.D., Unidad de Investigacion, Hospital Universitario Puerta del Mar, Cadiz, Spain.

The research was funded by grants from the National Institute of Diabetes and Digestive and Kidney Diseases, the Juvenile Diabetes Research Foundation, the Spanish Ministry of Science and Innovation, and the Pam and Scott Kroh and the Don and Arleen Wagner family foundations.


Story Source:

The above story is based on materials provided by University of Pittsburgh Schools of the Health Sciences. Note: Materials may be edited for content and length.


Cite This Page:

University of Pittsburgh Schools of the Health Sciences. "One molecule, many more insulin-producing cells to treat diabetes." ScienceDaily. ScienceDaily, 29 July 2010. <www.sciencedaily.com/releases/2010/07/100728082747.htm>.
University of Pittsburgh Schools of the Health Sciences. (2010, July 29). One molecule, many more insulin-producing cells to treat diabetes. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2010/07/100728082747.htm
University of Pittsburgh Schools of the Health Sciences. "One molecule, many more insulin-producing cells to treat diabetes." ScienceDaily. www.sciencedaily.com/releases/2010/07/100728082747.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Oxfam Calls for Massive Aid for Ebola-Hit West Africa

Oxfam Calls for Massive Aid for Ebola-Hit West Africa

AFP (Jan. 29, 2015) Oxfam International has called for a multi-million dollar post-Ebola "Marshall Plan", with financial support given by wealthy countries, to help Guinea, Sierra Leone and Liberia to recover. Duration: 01:10 Video provided by AFP
Powered by NewsLook.com
Are We Winning The Fight Against Ebola?

Are We Winning The Fight Against Ebola?

Newsy (Jan. 29, 2015) The World Health Organization announced the fight against Ebola has entered its second phase as the number of cases per week has steadily dropped. Video provided by Newsy
Powered by NewsLook.com
Calif. Health Officials Campaign Against E-Cigarettes

Calif. Health Officials Campaign Against E-Cigarettes

Newsy (Jan. 29, 2015) The California Health Department says e-cigarettes are a public health risk for both smokers and those who inhale e-cig smoke secondhand. Video provided by Newsy
Powered by NewsLook.com
Measles Scare Sends 66 Calif. Students Home

Measles Scare Sends 66 Calif. Students Home

AP (Jan. 29, 2015) Officials say 66 students at a Southern California high school have been told to stay home through the end of next week because they may have been exposed to measles and are not vaccinated. (Jan. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins