Featured Research

from universities, journals, and other organizations

New drug target for immune diseases discovered

Date:
August 4, 2010
Source:
The Mount Sinai Hospital / Mount Sinai School of Medicine
Summary:
Researchers have found a new mechanism that explains how certain immune cells are activated to create protective antibodies against infections or pathological antibodies such as those present in autoimmune diseases like lupus and rheumatoid arthritis.

Researchers from Mount Sinai School of Medicine have found a new mechanism that explains how certain immune cells are activated to create protective antibodies against infections or pathological antibodies such as those present in autoimmune diseases like lupus and rheumatoid arthritis.

The research is published online in Nature Immunology.

Led by Dr. Andrea Cerutti, MD, Professor of Medicine at Mount Sinai School of Medicine, researchers studied human tissue and immune cells from people with mutations of TACI and MyD88, two proteins required to activate the immune system. MyD88 is a signaling protein that alerts the so-called innate immune system -- the immune system encoded at birth that remains unchanged -- to the presence of pathogens. TACI is a receptor protein used to activate immune cells in the so-called adaptive immune system, a more sophisticated immune system than the innate, which is dynamic and combats pathogens. These new studies provided important and unexpected new insights in our understanding of immune diseases such as immunodeficiencies and autoimmune disorders.

"Our research shows that TACI and MyD88 are part of an immune circuit that bridges the innate and adaptive immune systems. This circuit makes our immune response more flexible, allowing a more effective generation of protective antibodies during infections. Genetic defects of TACI and MyD88 cause immunodeficiencies characterized by recurrent, life-threatening infections. On the other hand, an abnormally strong TACI-MyD88 interaction may exacerbate autoimmune diseases like lupus or rheumatoid arthritis," said Dr. Cerutti, lead investigator of the study. "Previous studies had suggested an involvement of TACI and MyD88 in lupus. Now that we have identified this interaction, we can figure out a way to inhibit it and prevent these diseases from getting worse."

Autoimmune diseases like lupus and rheumatoid arthritis are characterized by exaggerated production of molecules that activate the adaptive immune system and abnormal antibodies, which attack normal cells causing inflammation and tissue damage. This exaggerated production may occur partly as a result of abnormally strong signaling from TACI via MyD88. By analyzing cells and tissues from immunodeficient patients and genetically engineered mice, Dr. Cerutti's team found a previously unknown interaction between TACI and MyD88 that is important for the production of antibodies against infectious agents. Yet, the same interaction may cause the exaggerated immune response in people with autoimmune diseases.

"Our discovery provides a novel specific target, the signaling pathway between TACI and MyD88, to block the overreaction of the immune system and tissue damage in individuals with autoimmune disorders," said Dr. Cerutti. "We look forward to studying this discovery further and developing therapeutic targets that will inhibit the interaction between TACI and MyD88, preventing autoimmune diseases from progressing with fewer side effects than currently prescribed treatments."

Dr. Cerutti's team collaborated with other researchers at Mount Sinai School of Medicine, including Charlotte Cunningham-Rundles, MD, Professor of Medicine and Pediatrics, and Huabao Xiong, PhD, Assistant Professor of Medicine.

According to the National Women's Health Information Center, autoimmune diseases impact 23.5 million Americans. Common examples include lupus, in which the immune system attacks the skin and/or several organs within the body; rheumatoid arthritis, in which the immune system attacks joints; multiple sclerosis, in which the immune system attacks the nervous system; and Type 1diabetes, in which the immune system attacks insulin-producing cells in the pancreas.


Story Source:

The above story is based on materials provided by The Mount Sinai Hospital / Mount Sinai School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bing He, Raul Santamaria, Weifeng Xu, Montserrat Cols, Kang Chen, Irene Puga, Meimei Shan, Huabao Xiong, James B Bussel, April Chiu, Anne Puel, Jeanine Reichenbach, Lαszlσ Marodi, Rainer Dφffinger, Julia Vasconcelos, Andrew Issekutz, Jens Krause, Graham Davies, Xiaoxia Li, Bodo Grimbacher, Alessandro Plebani, Eric Meffre, Capucine Picard, Charlotte Cunningham-Rundles, Jean-Laurent Casanova & Andrea Cerutti. The transmembrane activator TACI triggers immunoglobulin class switching by activating B cells through the adaptor MyD88. Nature Immunology, 2010; DOI: 10.1038/ni.1914

Cite This Page:

The Mount Sinai Hospital / Mount Sinai School of Medicine. "New drug target for immune diseases discovered." ScienceDaily. ScienceDaily, 4 August 2010. <www.sciencedaily.com/releases/2010/08/100803132738.htm>.
The Mount Sinai Hospital / Mount Sinai School of Medicine. (2010, August 4). New drug target for immune diseases discovered. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2010/08/100803132738.htm
The Mount Sinai Hospital / Mount Sinai School of Medicine. "New drug target for immune diseases discovered." ScienceDaily. www.sciencedaily.com/releases/2010/08/100803132738.htm (accessed April 20, 2014).

Share This



More Health & Medicine News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nine-Month-Old Baby Can't Open His Mouth

Nine-Month-Old Baby Can't Open His Mouth

Newsy (Apr. 19, 2014) — Nine-month-old Wyatt Scott was born with a rare disorder called congenital trismus, which prevents him from opening his mouth. Video provided by Newsy
Powered by NewsLook.com
'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) — In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) — A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) — The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins