Featured Research

from universities, journals, and other organizations

Molecules delivering drugs as they walk

Date:
August 4, 2010
Source:
American Institute of Physics
Summary:
A new paper provides a theoretical model that compares the transport characteristics of straight- and branched-chain polymers in various channels -- work that could aid in the development of carrier molecules for delivering drugs at a controlled rate in the body.

An octopus-like polymer can "walk" along the wall of a narrow channel as it is pushed through by a solvent. Now research in The Journal of Chemical Physics, which is published by the American Institute of Physics, provides a theoretical model that compares the transport characteristics of straight- and branched-chain polymers in smooth channels as well as in channels whose walls interact with the polymer -- work that could aid in the development of carrier molecules for delivering drugs at a controlled rate in the body.

"The deformability of particles makes them very different from atoms or hard colloids," says author Arash Nikoubashman of Heinrich Heine University of Dόsseldorf, Germany. "Equilibrium studies show a huge impact on the self-organization of these molecules and we wanted to know how this aspect expresses itself when the molecules are pushed around by a flowing solvent."

The researchers compared the flow of linear polymers to that of dendrimers, or regularly branched polymers. Results indicate that flow through a narrow channel is independent of the number of monomers in the polymer chain. In a smooth channel, flow is also independent of shape: the linear polymer and the dendrimer both travel in the rapid solvent flow toward the center of the channel. When patches that attract the polymer are placed on the wall, however, the dendrimer "walks" along the wall from patch to patch, while the linear polymer tends to remain close to the wall, moving very slowly, if at all, through the channel.

Possible applications of this research include an understanding to the movement of biological molecules through pores, and the development of dendritic carriers to deliver molecules at a controlled rate. Blood vessels resemble the model channel with patches of differing chemical affinities.

"At the moment we are investigating the cargo transport capabilities of dendrimers," says Nikoubashman. "Place a guest molecule, such as a drug within a dendrimer that has affinity to specific patches on the vessel wall and let it flow with the solvent." As the dendrimer docks on the patches, it may be possible to deliver the cargo to the dock while the carrier washes away with the flow.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Arash Nikoubashman and Christos Likos. Flow-induced polymer translocation through narrow and patterned Channels. Journal of Chemical Physics, 2010; (in press) [link]

Cite This Page:

American Institute of Physics. "Molecules delivering drugs as they walk." ScienceDaily. ScienceDaily, 4 August 2010. <www.sciencedaily.com/releases/2010/08/100803175011.htm>.
American Institute of Physics. (2010, August 4). Molecules delivering drugs as they walk. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2010/08/100803175011.htm
American Institute of Physics. "Molecules delivering drugs as they walk." ScienceDaily. www.sciencedaily.com/releases/2010/08/100803175011.htm (accessed July 29, 2014).

Share This




More Matter & Energy News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) — Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) — The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com
Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Newsy (July 28, 2014) — Stanford University published its findings for a "pure" lithium ion battery that could have our everyday devices and electric cars running longer. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) — AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins