Featured Research

from universities, journals, and other organizations

Molecules delivering drugs as they walk

Date:
August 4, 2010
Source:
American Institute of Physics
Summary:
A new paper provides a theoretical model that compares the transport characteristics of straight- and branched-chain polymers in various channels -- work that could aid in the development of carrier molecules for delivering drugs at a controlled rate in the body.

An octopus-like polymer can "walk" along the wall of a narrow channel as it is pushed through by a solvent. Now research in The Journal of Chemical Physics, which is published by the American Institute of Physics, provides a theoretical model that compares the transport characteristics of straight- and branched-chain polymers in smooth channels as well as in channels whose walls interact with the polymer -- work that could aid in the development of carrier molecules for delivering drugs at a controlled rate in the body.

Related Articles


"The deformability of particles makes them very different from atoms or hard colloids," says author Arash Nikoubashman of Heinrich Heine University of Dόsseldorf, Germany. "Equilibrium studies show a huge impact on the self-organization of these molecules and we wanted to know how this aspect expresses itself when the molecules are pushed around by a flowing solvent."

The researchers compared the flow of linear polymers to that of dendrimers, or regularly branched polymers. Results indicate that flow through a narrow channel is independent of the number of monomers in the polymer chain. In a smooth channel, flow is also independent of shape: the linear polymer and the dendrimer both travel in the rapid solvent flow toward the center of the channel. When patches that attract the polymer are placed on the wall, however, the dendrimer "walks" along the wall from patch to patch, while the linear polymer tends to remain close to the wall, moving very slowly, if at all, through the channel.

Possible applications of this research include an understanding to the movement of biological molecules through pores, and the development of dendritic carriers to deliver molecules at a controlled rate. Blood vessels resemble the model channel with patches of differing chemical affinities.

"At the moment we are investigating the cargo transport capabilities of dendrimers," says Nikoubashman. "Place a guest molecule, such as a drug within a dendrimer that has affinity to specific patches on the vessel wall and let it flow with the solvent." As the dendrimer docks on the patches, it may be possible to deliver the cargo to the dock while the carrier washes away with the flow.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Arash Nikoubashman and Christos Likos. Flow-induced polymer translocation through narrow and patterned Channels. Journal of Chemical Physics, 2010; (in press) [link]

Cite This Page:

American Institute of Physics. "Molecules delivering drugs as they walk." ScienceDaily. ScienceDaily, 4 August 2010. <www.sciencedaily.com/releases/2010/08/100803175011.htm>.
American Institute of Physics. (2010, August 4). Molecules delivering drugs as they walk. ScienceDaily. Retrieved March 4, 2015 from www.sciencedaily.com/releases/2010/08/100803175011.htm
American Institute of Physics. "Molecules delivering drugs as they walk." ScienceDaily. www.sciencedaily.com/releases/2010/08/100803175011.htm (accessed March 4, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, March 4, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Forensic Holodeck Creates 3D Crime Scenes

Forensic Holodeck Creates 3D Crime Scenes

Reuters - Innovations Video Online (Mar. 3, 2015) — A holodeck is no longer the preserve of TV sci-fi classic Star Trek, thanks to researchers from the Institute of Forensic Medicine Zurich, who have created what they say is the first system in the world to visualise the 3D data of forensic scans. Jim Drury saw it in operation. Video provided by Reuters
Powered by NewsLook.com
Solar Plane Passes New Test Ahead of World Tour

Solar Plane Passes New Test Ahead of World Tour

AFP (Mar. 2, 2015) — A solar-powered plane made a third successful test flight in the United Arab Emirates on Monday ahead of a planned round-the-world tour to promote alternative energy. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Electric Hydrofoiling Watercraft Delivers Eco-Friendly Thrills

Electric Hydrofoiling Watercraft Delivers Eco-Friendly Thrills

Reuters - Innovations Video Online (Mar. 2, 2015) — The Quadrofoil is a high-tech electric personal watercraft that its makers call a &apos;sports car for the water&apos;. When it hits 10 km/h, the Slovenian-engineered Quadrofoil is lifted above the water onto four wing-like hydrofoils where it &apos;flies&apos; above the surface with minimal water resistance. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Everything You Need To Know About Mobile Payments In 2015

Everything You Need To Know About Mobile Payments In 2015

Newsy (Mar. 2, 2015) — This year, mobile payments might finally catch on. Here are the things you need to know to stay on top of the latest developments. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins