Featured Research

from universities, journals, and other organizations

HVAC ducts can be used for wireless monitoring technology

Date:
August 19, 2010
Source:
North Carolina State University
Summary:
Scientists have found a way to implement wireless monitoring technology -- with uses ranging from climate control to health and safety applications -- by tapping into a building's heating, ventilating and air-conditioning (HVAC) ducts. The finding could lead to significant time and cost savings for builders and building managers.

A new study by a team including a professor from North Carolina State University has found a way to implement wireless monitoring technology -- with uses ranging from climate control to health and safety applications -- by tapping into a building's heating, ventilating and air-conditioning (HVAC) ducts. The finding could lead to significant time and cost savings for builders and building managers, since the systems can be put into place without the expense and effort of running wires throughout the buildings.

Related Articles


At issue are radio-frequency identification (RFID) tags, which can be equipped with sensors that allow them to transmit information -- such as temperature -- back to a reader. RFID systems use centralized readers to collect data from relatively small, lightweight tags equipped with radio antennas. In an RFID system, an electronic reader broadcasts a radio wave with a specific frequency. When an RFID tag receives the transmission it absorbs energy from that transmission, enabling it to respond to the reader by the way that it reflects the wave.

The technology may also have significant applications for health and safety monitoring. "This would work with anything you can create an electronic sensor for," says Dr. Dan Stancil, co-author of the study paper and professor and head of NC State's Department of Electrical and Computer Engineering. The new research opens the door to RFID tag smoke detectors, carbon-monoxide monitors, or sensors that can detect chemical, biological or radiological agents.

The researchers focused on ultrahigh-frequency (UHF) RFID systems, which operate in the 902-928 MegaHertz band in North America (and on various other bandwidths in other parts of the world). When placed in open spaces, UHF RFID tags typically need to be within 5-10 meters of the reader in order to respond to a transmission. However, the researchers have found that, by tapping into a building's HVAC system, UHF RFID tags can operate when located 30 meters or more from a reader.

"Because you can tap into existing infrastructure, I think this technology is immediately economically viable," Stancil says. "Avoiding the labor involved with installing traditional sensors and the related wiring would likely more than compensate for the cost of the RFID tags and readers."

For example, existing climate-control units have thermometers placed throughout a building, each of which is connected to a central climate-control monitor via extensive wiring. However, you could distribute RFID tags with temperature sensors throughout the building instead, with short antennas connecting them to the building's HVAC ductwork. The tags would then send temperature data wirelessly to readers via the ductwork.

The HVAC ductwork is an excellent conduit for the radio transmissions because the ducts typically consist of hollow metal pipes. Those pipes can be used to guide the radio waves, keeping the waves from dispersing, and helping to maintain a strong signal over a greater distance. The researchers performed their experiments in ductwork that was 30 meters long, and found that the RFID tags functioned well at that distance. The researchers don't yet know how much further a tag can be from a reader and still function effectively.

The work was done by a team of researchers, all of whom are current or former Stancil students at Carnegie Mellon University: Pavel Nikitin of Intermec Technologies Corporation; Darmindra Arumugam and Matthew Chabalko of Carnegie Mellon University; and Benjamin Henty of Johns Hopkins University Applied Physics Lab. Stancil was a professor at Carnegie Mellon University before becoming head of the electrical and computer engineering department at NC State in August 2009. The research will be published in the September issue of Proceedings of the IEEE.

NC State's Department of Electrical and Computer Engineering is part of the university's College of Engineering.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Pavel V. Nikitin et al. Long Range Passive UHF RFID System Using HVAC Ducts. Proceedings of the IEEE, September 2010

Cite This Page:

North Carolina State University. "HVAC ducts can be used for wireless monitoring technology." ScienceDaily. ScienceDaily, 19 August 2010. <www.sciencedaily.com/releases/2010/08/100818105732.htm>.
North Carolina State University. (2010, August 19). HVAC ducts can be used for wireless monitoring technology. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2010/08/100818105732.htm
North Carolina State University. "HVAC ducts can be used for wireless monitoring technology." ScienceDaily. www.sciencedaily.com/releases/2010/08/100818105732.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com
3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins