Featured Research

from universities, journals, and other organizations

How the brain shifts between sleep/awake states under anesthesia

Date:
August 26, 2010
Source:
University of Pennsylvania School of Medicine
Summary:
An estimated 25 million patients per year in the U.S. undergo surgeries using general anesthesia, but scientists have only been able to hypothesize how anesthetics interact with the CNS. Now, researchers have established in animal models that the brain comes in and out of a state of induced unconsciousness through different processes.

Despite the fact that an estimated 25 million patients per year in the U.S. undergo surgeries using general anesthesia, scientists have only been able to hypothesize exactly how anesthetics interact with the central nervous system. They previously thought that the processes of "going under" and waking up from anesthesia affected the brain in the same way. Now, researchers at the University of Pennsylvania School of Medicine have established in animal models that the brain comes in and out of a state of induced unconsciousness through different processes.

The findings, published in PLoS ONE, may help researchers better understand serious sleep disorders and states of impaired consciousness such as comas.

"One major unanswered question in neuroscience is how the brain transitions between conscious and unconscious states," said senior author Max B. Kelz, MD, PhD, assistant professor of Anesthesiology and Critical Care. "Our results suggest that the brain keeps track of whether it is conscious or offline in an unconscious state. We are working to understand the mechanisms through which the brain accomplishes this feat. Studying general anesthetics in animal models offers a controllable means to investigate this newly recognized behavioral barrier that separates conscious from unconscious states."

Induction of anesthesia is commonly attributed to drug-induced modifications of neuronal function, whereas emergence from anesthesia has been thought to occur passively, with the elimination of the anesthetic from sites in the central nervous system (CNS). If this were true, then CNS anesthetic concentrations on induction and emergence would be indistinguishable.

However, by generating anesthetic dose response data in both fruit flies and mice, the researchers demonstrated that the forward and reverse paths through which anesthetic-induced unconsciousness arises and dissipates are not identical. Instead the animal subjects exhibited a delay in return to a state of consciousness despite the reduced concentration of the anesthetic.

The researchers observed that once a group of animal subjects underwent a transition from wakefulness to anesthetic-induced unconsciousness, the subjects exhibited resistance to the return of the wakeful state. Based on their findings, the authors propose a fundamental and biologically conserved state, which they call neural inertia, a tendency of the CNS to resist transitions between consciousness and unconsciousness.

"The findings from this study may provide insights into the regulation of sleep as well as states in which return of consciousness is pathologically impaired such as some types of coma," said Kelz. "This line of research may one day help us to develop novel anesthetic drugs and targeted therapies for patients who have different forms of sleep disorders or who have the potential to awaken from coma but remain stuck in comatose states for months or years."

The study was conducted by a collaborative team of researchers from several departments and centers at the University of Pennsylvania School of Medicine including: Eliot B. Friedman, Department of Medicine, Center for Sleep and Respiratory Neurobiology, and the Institute for Translational Medicine; Yi Sun, Department of Anesthesiology and Critical Care; Jason T. Moore, Department of Anesthesiology and Critical Care and the Mahoney Institute for Neurosciences; Hsiao-Tung Hung, Department of Medicine and the Center for Sleep and Respiratory Neurobiology; Qing Cheng Meng, Department of Anesthesiology and Critical Care; Priyan Perera, Department of Anesthesiology and Critical Care; Steven A. Thomas, Department of Pharmacology; Roderic G. Eckenhoff, Department of Anesthesiology and Critical Care; and Amita Sehga, the Center for Sleep and Respiratory Neurobiology.

This work was funded in part by an American Recovery and Reinvestment Act grant. Additional funding was provided by the National Institute for General Medical Sciences, the Foundation for Anesthesia Education and Research, University of Pennsylvania's Institute for Translational Medicine and Therapeutics, the Harold Amos Medical Faculty Development Program from the R.W. Johnson Foundation, the Parker B. Francis Fellowship program, and the University of Pennsylvania Department of Anesthesiology and Critical Care.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Eliot B. Friedman, Yi Sun, Jason T. Moore, Hsiao-Tung Hung, Qing Cheng Meng, Priyan Perera, William J. Joiner, Steven A. Thomas, Roderic G. Eckenhoff, Amita Sehgal, Max B. Kelz, Bruno van Swinderen. A Conserved Behavioral State Barrier Impedes Transitions between Anesthetic-Induced Unconsciousness and Wakefulness: Evidence for Neural Inertia. PLoS ONE, 2010; 5 (7): e11903 DOI: 10.1371/journal.pone.0011903

Cite This Page:

University of Pennsylvania School of Medicine. "How the brain shifts between sleep/awake states under anesthesia." ScienceDaily. ScienceDaily, 26 August 2010. <www.sciencedaily.com/releases/2010/08/100826104212.htm>.
University of Pennsylvania School of Medicine. (2010, August 26). How the brain shifts between sleep/awake states under anesthesia. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2010/08/100826104212.htm
University of Pennsylvania School of Medicine. "How the brain shifts between sleep/awake states under anesthesia." ScienceDaily. www.sciencedaily.com/releases/2010/08/100826104212.htm (accessed October 23, 2014).

Share This



More Health & Medicine News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Fears Keep Guinea Hospitals Empty

Ebola Fears Keep Guinea Hospitals Empty

AP (Oct. 23, 2014) Fears of Ebola are keeping doctors and patients alike away from hospitals in the West African nation of Guinea. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Working Mother (Oct. 22, 2014) Is your child ready? Video provided by Working Mother
Powered by NewsLook.com
U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

Newsy (Oct. 22, 2014) Now that the U.S. is restricting travel from West Africa, some are dropping questions about a travel ban and instead asking about visa bans. Video provided by Newsy
Powered by NewsLook.com
More People Diagnosed With TB In 2013, But There's Good News

More People Diagnosed With TB In 2013, But There's Good News

Newsy (Oct. 22, 2014) The World Health Organizations says TB numbers rose in 2013, but it's partly due to better detection and more survivors. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins