Featured Research

from universities, journals, and other organizations

Tracing the big picture of Mars' atmosphere

Date:
August 31, 2010
Source:
NASA/Jet Propulsion Laboratory
Summary:
One of the instruments on a 2016 mission to orbit Mars will provide daily maps of global, pole-to-pole, vertical distributions of the temperature, dust, water vapor and ice clouds in the Martian atmosphere.

The Mars Climate Sounder instrument on NASA's Mars Reconnaissance Orbiter maps the vertical distribution of temperatures, dust, water vapor and ice clouds in the Martian atmosphere as the orbiter flies a near-polar orbit.
Credit: NASA/JPL-Caltech

One of the instruments on a 2016 mission to orbit Mars will provide daily maps of global, pole-to-pole, vertical distributions of the temperature, dust, water vapor and ice clouds in the Martian atmosphere.

The joint European-American mission, ExoMars Trace Gas Orbiter, will seek faint gaseous clues about possible life on Mars. This instrument, called the ExoMars Climate Sounder, will supply crucial context with its daily profiling of the atmosphere's changing structure.

The European Space Agency and NASA have selected five instruments for ExoMars Trace Gas Orbiter. The European Space Agency will provide one instrument and the spacecraft. NASA will provide four instruments, including ExoMars Climate Sounder, which is coming from NASA's Jet Propulsion Laboratory, Pasadena, Calif.

Two of the other selected instruments are spectrometers -- one each from Europe and the United States -- designed to detect very low concentrations of methane and other important trace gases in the Martian atmosphere.

"To put the trace-gas measurements into context, you need to know the background structure and circulation of the atmosphere," said JPL's Tim Schofield, principal investigator for the ExoMars Climate Sounder. "We will provide the information needed to understand the distribution of trace gases identified by the spectrometers. We'll do this by characterizing the role of atmospheric circulation and aerosols, such as dust and ice, in trace-gas transport and in chemical reactions in the atmosphere affecting trace gases."

The ExoMars Climate Sounder is an infrared radiometer designed to operate continuously, day and night, from the spacecraft's orbit about 400 kilometers (about 250 miles) above the Martian surface. It can pivot to point downward or toward the horizon, measuring temperature, water vapor, dust and ices for each 5-kilometer (3-mile) increment in height throughout the atmosphere from ground level to 90 kilometers (56 miles) altitude.

Schofield and his international team have two other main goals for the investigation, besides aiding in interpretation of trace-gas detections.

One is to extend the climate mapping record currently coming from a similar instrument, the Mars Climate Sounder, on NASA's Mars Reconnaissance Orbiter, which has been working at Mars since 2006. The orbital geometry of the Mars Reconnaissance Orbiter mission enables this sounder to record atmospheric profiles only at about 3 p.m. and 3 a.m. during the Martian day, except near the poles. The ExoMars Trace Gas Orbiter will fly an orbital pattern that allows the spacecraft to collect data at all times of day, at all latitudes.

"We'll fill in information about variability at different times of day, and we'll add to the number of Mars years for understanding year-to-year variability," said Schofield. "The most obvious year-to-year change is that some years have global dust storms and others don't. We'd like to learn whether there's anything predictive for anticipating the big dust storms, and what makes them so variable from year to year."

A third research goal is to assist future landings on Mars by supplying information about the variable density of the atmosphere. At a chosen landing site, atmospheric density can change from one day to the next, affecting a spacecraft's descent.

"We want to provide background climatology for what to expect at a given site, in a given season, for a particular time of day, and also nearly real-time information for the atmospheric structure in the days leading up to the landing of a spacecraft launched after 2016," said Schofield.

The 2016 ExoMars Trace Gas Orbiter is the first in a series of planned Mars mission collaborations of the European Space Agency and NASA. A variable presence of small amounts of methane in the Martian atmosphere has been indicated from orbital and Earth-based observations. A key goal of the mission is to gain a better understanding of methane and other trace gases that could be evidence about possible biological activity. Methane can be produced both biologically and without life.

Besides the two spectrometers and the climate sounder, the orbiter's selected instruments include two NASA-provided imagers: a high-resolution, stereo, color imager, and a wide-angle, color, weather camera. The orbiter will also serve as a communications relay for missions on the surface of Mars and will carry a European-built descent-and-landing demonstration module designed to operate for a few days on the Mars surface. JPL, a division of the California Institute of Technology, manages NASA's roles in the mission.


Story Source:

The above story is based on materials provided by NASA/Jet Propulsion Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Jet Propulsion Laboratory. "Tracing the big picture of Mars' atmosphere." ScienceDaily. ScienceDaily, 31 August 2010. <www.sciencedaily.com/releases/2010/08/100830233424.htm>.
NASA/Jet Propulsion Laboratory. (2010, August 31). Tracing the big picture of Mars' atmosphere. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2010/08/100830233424.htm
NASA/Jet Propulsion Laboratory. "Tracing the big picture of Mars' atmosphere." ScienceDaily. www.sciencedaily.com/releases/2010/08/100830233424.htm (accessed October 23, 2014).

Share This



More Space & Time News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Russian Cosmonauts Kick Off Final Spacewalk of 2014

Russian Cosmonauts Kick Off Final Spacewalk of 2014

Reuters - US Online Video (Oct. 22, 2014) — Russian cosmonauts Maxim Suraev and Alexander Samokutyaev step outside the International Space Station to perform work on the exterior of the station's Russian module. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) — A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com
Latin America Launches Communications Satellite

Latin America Launches Communications Satellite

AFP (Oct. 17, 2014) — Argentina launches a home-built satellite, a first for Latin America. It will ride a French-made Ariane 5 rocket into orbit, and will provide cell phone, digital TV, Internet and data services to the lower half of South America. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
This Week @ NASA, October 17, 2014

This Week @ NASA, October 17, 2014

NASA (Oct. 17, 2014) — Power spacewalk, MAVEN’s “First Light”, Hubble finds extremely distant galaxy and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins