Featured Research

from universities, journals, and other organizations

Ultraviolet source helps NASA spacecraft measure the origins of space weather

Date:
September 1, 2010
Source:
National Institute of Standards and Technology (NIST)
Summary:
With a brilliant, finely tuned spark of ultraviolet light, a physicist has helped NASA scientists successfully position a crucial UV sensor inside a space-borne instrument to observe a "hidden" layer of the Sun where violent space weather can originate.

NIST’s unique "sliding spark source" (inside the glass tubing) feeds ultraviolet light into NASA’s Solar Ultraviolet Magnetograph Investigation instrument, designed to measure magnetic fields on the sun.
Credit: Reader/NIST

With a brilliant, finely tuned spark of ultraviolet (UV) light, a physicist at the National Institute of Standards and Technology (NIST) helped NASA scientists successfully position a crucial UV sensor inside a space-borne instrument to observe a "hidden" layer of the Sun where violent space weather can originate.

Related Articles


Dark spots on the Sun release particles and electromagnetic fields into space. As these particles and fields pass through the Sun's "transition region," 5,000 kilometers above the surface, they can gather considerable steam, resulting in violent episodes of "space weather" that can damage Earth-orbiting satellites and disrupt electronic communications.

The powerful magnetic fields in the transition region can be studied indirectly, by observing the UV light emanating from that region. The fields slightly shift the colors (wavelengths) of UV light released by charged atoms (ions) in their vicinity. Measuring how much these wavelengths shift can yield information on the magnetic field's strength.

The catch is you can't do it from Earth, where the atmosphere absorbs the UV light, so a team at NASA Marshall Space Flight Center in Huntsville, Ala., constructed a rocket-borne instrument, known as the Solar Ultraviolet Magnetograph Investigation (SUMI), designed to take pictures of these magnetic fields from space.

SUMI observes shifts in the well-known wavelengths of UV light emitted by magnesium and carbon ions caught in the magnetic fields of the transition region. The instrument's optics break down the incoming UV light into a spectrum of individual wavelengths and fans them out, much as a prism fans out white light into a rainbow. The trick is in knowing precisely which wavelength falls where in the instrument and adjusting it so that the desired wavelengths land on the instrument's detectors.

"The problem is that SUMI's detectors are small, so they don't capture a wide range of wavelengths," says NIST physicist Joseph Reader. "The issue becomes how to align the complicated optics in the instrument so that the magnesium and carbon lines are recorded on its detectors. The solution is to get a light source that can produce these same lines in the laboratory," he says, and use them to properly adjust the instrument's sensors.

Readily available lamps can simulate the UV light from the singly ionized magnesium, but generating the UV light from triply ionized carbon (carbon with three electrons removed) is difficult. Enter NIST's unique "sliding spark source." It consists of a pair of graphite electrodes with a quartz surface in between. A spark from these electrodes glides along the quartz surface, controllably producing the desired wavelengths of UV light from ionized carbon. Inside a clean room in Huntsville, UV radiation from the spark source entered SUMI, enabling its sensors to be accurately positioned before deployment.

On July 30, 2010, SUMI was successfully launched from White Sands, N.M. It rocketed 320 km in space and observed sunspot 11092 for about 6 minutes before parachuting back to earth. The Huntsville team is analyzing the data it obtained.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology (NIST). "Ultraviolet source helps NASA spacecraft measure the origins of space weather." ScienceDaily. ScienceDaily, 1 September 2010. <www.sciencedaily.com/releases/2010/09/100901121502.htm>.
National Institute of Standards and Technology (NIST). (2010, September 1). Ultraviolet source helps NASA spacecraft measure the origins of space weather. ScienceDaily. Retrieved March 26, 2015 from www.sciencedaily.com/releases/2010/09/100901121502.htm
National Institute of Standards and Technology (NIST). "Ultraviolet source helps NASA spacecraft measure the origins of space weather." ScienceDaily. www.sciencedaily.com/releases/2010/09/100901121502.htm (accessed March 26, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, March 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Amazon Complains U.S. Is Too Slow To Regulate Drones

Amazon Complains U.S. Is Too Slow To Regulate Drones

Newsy (Mar. 25, 2015) Days after getting approval to test certain commercial drones, Amazon says the Federal Aviation Administration is dragging its feet on the matter. Video provided by Newsy
Powered by NewsLook.com
Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Reuters - Innovations Video Online (Mar. 25, 2015) European researchers say our smartphone use offers scientists an ideal testing ground for human brain plasticity. Dr Ako Ghosh&apos;s team discovered that the brains and thumbs of smartphone users interact differently from those who use old-fashioned handsets. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
China Wants to Export Its Steel Problem

China Wants to Export Its Steel Problem

Reuters - Business Video Online (Mar. 25, 2015) China is facing a crisis with a glut of steel and growing public anger over the pollution created by production. In a move to solve the problem, some steel mills are looking to relocate overseas. Jane Lanhee Lee reports. Video provided by Reuters
Powered by NewsLook.com
Robot Stays on Its Feet Despite Punishment

Robot Stays on Its Feet Despite Punishment

Reuters - Innovations Video Online (Mar. 24, 2015) Robotic engineers have modelled a two-legged robot to be fast and agile like an ostrich. The design is more efficient and stable than bipedal robots built to move like humans, according to its creators who abuse the poor machine to test its skills. Ben Gruber has more. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins