Featured Research

from universities, journals, and other organizations

Ultraviolet source helps NASA spacecraft measure the origins of space weather

Date:
September 1, 2010
Source:
National Institute of Standards and Technology (NIST)
Summary:
With a brilliant, finely tuned spark of ultraviolet light, a physicist has helped NASA scientists successfully position a crucial UV sensor inside a space-borne instrument to observe a "hidden" layer of the Sun where violent space weather can originate.

NIST’s unique "sliding spark source" (inside the glass tubing) feeds ultraviolet light into NASA’s Solar Ultraviolet Magnetograph Investigation instrument, designed to measure magnetic fields on the sun.
Credit: Reader/NIST

With a brilliant, finely tuned spark of ultraviolet (UV) light, a physicist at the National Institute of Standards and Technology (NIST) helped NASA scientists successfully position a crucial UV sensor inside a space-borne instrument to observe a "hidden" layer of the Sun where violent space weather can originate.

Dark spots on the Sun release particles and electromagnetic fields into space. As these particles and fields pass through the Sun's "transition region," 5,000 kilometers above the surface, they can gather considerable steam, resulting in violent episodes of "space weather" that can damage Earth-orbiting satellites and disrupt electronic communications.

The powerful magnetic fields in the transition region can be studied indirectly, by observing the UV light emanating from that region. The fields slightly shift the colors (wavelengths) of UV light released by charged atoms (ions) in their vicinity. Measuring how much these wavelengths shift can yield information on the magnetic field's strength.

The catch is you can't do it from Earth, where the atmosphere absorbs the UV light, so a team at NASA Marshall Space Flight Center in Huntsville, Ala., constructed a rocket-borne instrument, known as the Solar Ultraviolet Magnetograph Investigation (SUMI), designed to take pictures of these magnetic fields from space.

SUMI observes shifts in the well-known wavelengths of UV light emitted by magnesium and carbon ions caught in the magnetic fields of the transition region. The instrument's optics break down the incoming UV light into a spectrum of individual wavelengths and fans them out, much as a prism fans out white light into a rainbow. The trick is in knowing precisely which wavelength falls where in the instrument and adjusting it so that the desired wavelengths land on the instrument's detectors.

"The problem is that SUMI's detectors are small, so they don't capture a wide range of wavelengths," says NIST physicist Joseph Reader. "The issue becomes how to align the complicated optics in the instrument so that the magnesium and carbon lines are recorded on its detectors. The solution is to get a light source that can produce these same lines in the laboratory," he says, and use them to properly adjust the instrument's sensors.

Readily available lamps can simulate the UV light from the singly ionized magnesium, but generating the UV light from triply ionized carbon (carbon with three electrons removed) is difficult. Enter NIST's unique "sliding spark source." It consists of a pair of graphite electrodes with a quartz surface in between. A spark from these electrodes glides along the quartz surface, controllably producing the desired wavelengths of UV light from ionized carbon. Inside a clean room in Huntsville, UV radiation from the spark source entered SUMI, enabling its sensors to be accurately positioned before deployment.

On July 30, 2010, SUMI was successfully launched from White Sands, N.M. It rocketed 320 km in space and observed sunspot 11092 for about 6 minutes before parachuting back to earth. The Huntsville team is analyzing the data it obtained.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology (NIST). "Ultraviolet source helps NASA spacecraft measure the origins of space weather." ScienceDaily. ScienceDaily, 1 September 2010. <www.sciencedaily.com/releases/2010/09/100901121502.htm>.
National Institute of Standards and Technology (NIST). (2010, September 1). Ultraviolet source helps NASA spacecraft measure the origins of space weather. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2010/09/100901121502.htm
National Institute of Standards and Technology (NIST). "Ultraviolet source helps NASA spacecraft measure the origins of space weather." ScienceDaily. www.sciencedaily.com/releases/2010/09/100901121502.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins