Featured Research

from universities, journals, and other organizations

Live imaging puts new light on stem cell division

Date:
September 2, 2010
Source:
University of Oregon
Summary:
A long-held assumption about asymmetrical division of stem cells has cracked. Researchers report that the mitotic spindle does not act alone -- that cortical proteins help to position a cleavage furrow in the right location.

Clemens Cabernard, a postdoctoral researcher at the University of Oregon, provided new insight on the asymmetrical division of neuroblasts (stem cells) in fruit flies.
Credit: Photo by Jim Barlow

A long-held assumption about asymmetrical division of stem cells has cracked. Researchers at the University of Oregon report that the mitotic spindle does not act alone -- that cortical proteins help to position a cleavage furrow in the right location.

Their discovery, described in the Sept. 2 issue of the journal Nature, provides a new window on how stem cells divide to produce two unequal daughter cells: one that lives on as a new stem cell and other, smaller cell, that adopts a new function, in this case as a neuron.

A three-member team focused on Drosophila (fruit flies) neural stem cells known as neuroblasts, long known for dividing asymmetrically. What is learned in these flies often applies to many other mitotic (dividing) cells in other organisms such as mammals, including humans.

"This addresses a fundamental question in cell biology, namely how a cell knows where to place a cleavage furrow and thus divide in a symmetrical or asymmetrical fashion," said Clemens Cabernard, a postdoctoral fellow in the lab of Chris Doe, a Howard Hughes Medical Institute investigator in the UO Institute of Molecular Biology and director of the UO Institute of Neuroscience. Also on the team was Kenneth E. Prehoda, a UO biochemist and member of the Institute of Molecular Biology.

What the UO team found is that neuroblasts have two distinct dividing pathways that appear to work redundantly: one that is polarity induced and one that is spindle induced, Cabernard said.

Theories on cleavage furrow positioning during cell division have centered on the mitotic spindle, a network of fibers called microtubules.

One idea is that microtubules from spindle poles reach to the cortex, which delivers a positive or negative signal to determine the position of the cleavage ring. Another idea is that microtubule fibers from the center of the spindle reach out to the cortex resulting in the assembly of a cleavage ring (a complex consisting of several proteins, one of which is called myosin). A third model involves both. It was thought that asymmetrically dividing cells, such as drosophila neuroblasts, generate an asymmetric spindle and can position the cleavage ring in an asymmetric position, as opposed to symmetrically dividing cells that construct a symmetric spindle.

"We found a new mechanism in which a cleavage furrow can be placed at an asymmetric position," Cabernard said. "First, by way of a couple of experiments, we ruled out that the cleavage furrow is solely dependent on the position and symmetry/asymmetry of the mitotic spindle."

First researchers used mutants that lack astral microtubules, the microtubule fibers reaching out from the spindle poles towards the cortex and watched with live imaging what happens to the cleavage furrow. A cleavage furrow still occurred in an asymmetric position. This has been seen before but not using the same markers, Cabernard said.

Next, researchers removed the entire spindle from the picture with targeted drugs. Usually cells stop dividing in this condition, but a genetic trick allows these cells to initiate cell division despite the lack of a mitotic spindle. Surprisingly, researchers found, the proteins involved in constructing a cleavage furrow became localized in an asymmetric fashion and positioned a cleavage furrow in an asymmetric position -- pretty much like in wild-type neuroblasts. "Although cell division could not be completed, the dividing point was correctly marked," Cabernard said. "This told us that there must be a mechanism independent of the spindle."

In a third set of experiments, the research team rotated the mitotic spindle of neuroblasts using genetic mutants and thus changed the position of any spindle-derived signal. Interestingly, the team found that two cleavage furrows now formed, but only one coincided with the new position of the mitotic spindle, strongly supporting the hypothesis that a spindle independent signal also is used. Further experiments revealed that a cortical protein, required for proper neural stem cell divisions in mice and humans, is necessary for the asymmetric positioning of the cleavage furrow.

One of the marker proteins watched closely in the experiments was myosin. When a cell starts the division process, Cabernard said, the spindle is symmetrical but the myosin markers segregated toward the basal side -- and is localized in an asymmetric fashion -- which becomes smaller and transforms into a neuron upon cell division.

Although this research addresses a basic question in cell biology, the findings have important implications. Asymmetric cell division in fly or human stem cells is important to generate a number of differentiating cells while retaining a stem cell as a back up copy.

Previous work by Cabernard and Doe showed that if drosophila neuroblasts divide in a symmetric manner, which doesn't normally happen, two neuroblasts are generated. Thus, the researchers said, it is crucial for a stem cell to know where to place a cleavage furrow to produce all the required neurons. Similar results have been observed in neural stem cells in mice.

The National Institutes of Health, American Heart Association, Swiss National Science Foundation and Howard Hughes Medical Institute supported the research.


Story Source:

The above story is based on materials provided by University of Oregon. Note: Materials may be edited for content and length.


Journal Reference:

  1. Clemens Cabernard, Kenneth E. Prehoda & Chris Q. Doe. A spindle-independent cleavage furrow positioning pathway. Nature, 2010; 467 (7311): 91 DOI: 10.1038/nature09334

Cite This Page:

University of Oregon. "Live imaging puts new light on stem cell division." ScienceDaily. ScienceDaily, 2 September 2010. <www.sciencedaily.com/releases/2010/09/100901132147.htm>.
University of Oregon. (2010, September 2). Live imaging puts new light on stem cell division. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2010/09/100901132147.htm
University of Oregon. "Live imaging puts new light on stem cell division." ScienceDaily. www.sciencedaily.com/releases/2010/09/100901132147.htm (accessed September 21, 2014).

Share This



More Health & Medicine News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) — Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) — Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) — A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) — The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins