Featured Research

from universities, journals, and other organizations

Probing for principles underlying animal flock patterns: A model system for group behavior of nanomachines

Date:
September 2, 2010
Source:
Technische Universitaet Muenchen
Summary:
A team of physicists from Germany has developed a versatile biophysical model system that opens the door to studying phenomena such as the seemingly choreographed motion of hundreds or thousands of fish, birds, or insects, and probing their underlying principles. Using a combination of an experimental platform and theoretical models, more complex systems can now be described and their properties investigated.

Self-organization on a nano scale: Out of nothing, actin flaments organize themselves into structures like waves, spirals and ordered clusters.
Credit: Volker Schaller; Andreas Bausch / TUM

For the casual observer it is fascinating to watch the orderly and seemingly choreographed motion of hundreds or even thousands of fish, birds or insects. However, the formation and the manifold motion patterns of such flocks raise numerous questions fundamental to the understanding of complex systems.

A team of physicists from Technische Universitaet Muenchen (TUM) and LMU Muenchen has developed a versatile biophysical model system that opens the door to studying these phenomena and their underlying principles. Using a combination of an experimental platform and theoretical models, more complex systems can now be described and their properties investigated.

The Munich researchers report on their findings in the current issue of the journal Nature.

"Everything flows and nothing abides," is a saying ascribed to the Greek philosopher Heraclitus. Large groups of individuals may show collective behavior where the individuals' actions appear to be coordinated or even subordinated to the common good: Flocks of birds move through the air without a conductor, as if they were choreographed, and shoals of fish change their direction instantaneously when a shark appears. Yet science is still puzzled: Do all these systems obey the same universal laws? Does complex group behavior emerge from simple interactions between individuals intrinsically and inevitably? A team of researchers headed by Professor Andreas Bausch, Chair of Biophysics at TUM and Professor Erwin Frey, Chair of Statistical and Biological Physics at LMU, are unraveling the mystery.

The Munich researchers have developed a biophysical model system that makes it possible to carry out targeted high-precision experiments under controlled conditions. To this end, Volker Schaller from the TUM Chair of Biophysics, first author of the study, fixed biological motor proteins to a microscope coverslip in such a way that they could drive filaments of the muscle protein actin, suspended loosely over them, in any direction. The filaments measure about seven nanometers across, i.e. seven millionths of a meter, and are about ten micrometers long, i.e. a ten thousandth of a millimeter. The movement of the filaments is visualized using high-resolution microscopy.

In the experiments described in Nature, the actin filaments began to move as soon as ATP -- the fuel for the motor proteins -- was added. With low concentrations of actin filaments, the motion remained completely chaotic. Once the density crossed a threshold of five actin filaments per square micrometer, the filaments began to move collectively in larger clusters -- with an astonishing resemblance to flocks of birds or shoals of fish. "We can set and observe all relevant parameters in this system," says Schaller. "Using this approach, we can experimentally test the propositions of different theories on self-organization -- and that on the tiny scale of 'nanomachines'."

Structures like waves, swirls or ordered clusters seem to appear spontaneously during the experiments. Some of these structures grow to a size of almost one millimeter and remain stable for up to 45 minutes before they dissolve again. Based on these observations, Frey, together with his PhD student Christoph Weber, developed theoretical models to describe the experimental results. With the combination of extensible theoretical models and a precisely controllable experiment, the physicists have set out to tackle more difficult problems and unravel their underlying principles.

"Self-organization phenomena surround us on all levels of our lives," says Bausch. "It begins with traffic jams and the movement of human crowds or the swarming of animals and extends all the way to the organization of biological processes. Important examples are the formation of the cellular cytoskeleton or protein transport facilitated by motor proteins in cells." The underlying principles, though -- whether in economic, biological or physical systems -- are still among the great open questions of theoretical physics. "For our understanding of nature, as well, there are many fundamental principles yet to be discovered," emphasizes Frey. "However, forecasts should not be applied to the dynamics of human crowds over-hastily -- thus far, their complexity is much too great to be captured in simple theoretical models."

The research is funded by the Deutsche Forschungsgemeinschaft (DFG, SFB 863), the cluster of excellence Nanosystems Initiative Munich (NIM), the TUM Institute for Advanced Study at the Technische Universitaet Muenchen, and the Elite Network of Bavaria (CompInt, NanoBioTechnology).


Story Source:

The above story is based on materials provided by Technische Universitaet Muenchen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Volker Schaller, Christoph Weber, Christine Semmrich, Erwin Frey, Andreas R. Bausch. Polar patterns of driven filaments. Nature, 2010; 467 (7311): 73 DOI: 10.1038/nature09312

Cite This Page:

Technische Universitaet Muenchen. "Probing for principles underlying animal flock patterns: A model system for group behavior of nanomachines." ScienceDaily. ScienceDaily, 2 September 2010. <www.sciencedaily.com/releases/2010/09/100901145256.htm>.
Technische Universitaet Muenchen. (2010, September 2). Probing for principles underlying animal flock patterns: A model system for group behavior of nanomachines. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2010/09/100901145256.htm
Technische Universitaet Muenchen. "Probing for principles underlying animal flock patterns: A model system for group behavior of nanomachines." ScienceDaily. www.sciencedaily.com/releases/2010/09/100901145256.htm (accessed July 29, 2014).

Share This




More Computers & Math News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

It's Not Just Facebook: OKCupid Experiments With Users Too

It's Not Just Facebook: OKCupid Experiments With Users Too

Newsy (July 29, 2014) If you've been looking for love online, there's a chance somebody has been looking at how you're looking. Video provided by Newsy
Powered by NewsLook.com
Why Facebook Wants You To Download Its Messenger App

Why Facebook Wants You To Download Its Messenger App

Newsy (July 29, 2014) Facebook will start requiring users to download a separate Messenger application if they wish to continue using Facebook for mobile messaging. Video provided by Newsy
Powered by NewsLook.com
Teen's Phone Ignites Under Her Pillow; How Real Is The Risk?

Teen's Phone Ignites Under Her Pillow; How Real Is The Risk?

Newsy (July 28, 2014) A Texas teen's Samsung phone apparently ignited while she slept, but what was the real problem here? Video provided by Newsy
Powered by NewsLook.com
Zillow Snaps Up Web Real Estate With Trulia Deal

Zillow Snaps Up Web Real Estate With Trulia Deal

Reuters - US Online Video (July 28, 2014) Zillow's decision to buy rival Trulia is just one step in a continuing string of acquisitions, and Zillow CEO Spencer Rascoff is already thinking about his next big deal. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins