Featured Research

from universities, journals, and other organizations

How do your crystals grow?

Date:
September 15, 2010
Source:
American Institute of Physics
Summary:
New research uses fluorescence correlation spectroscopy to investigate the processes at the surface of a growing crystal. This work may help to improve the crystallization of biomolecules -- an important tool in pharmaceutical research and other fields.

Because one of the main bottlenecks in determining the structure of protein molecules is producing good isolated single crystals, improved crystallization techniques would be useful in a wide range of genomics and pharmaceutical research.

Related Articles


Research reported in the Journal of Chemical Physics uses fluorescence correlation spectroscopy (FCS) to investigate the processes at the surface of a growing crystal. By focusing a laser on the crystal surface and measuring the resulting fluorescence, FCS can resolve dimensions as small as a single wavelength of the light.

"Another advantage of fluorescence is that it provides a high signal-to-noise ratio," says author Shinpei Tanaka of Hiroshima University in Japan. "We are able to measure very dilute solutions at the crystal interface."

The researchers found that when single tetragonal crystals of egg-white lysozyme formed, there was no concentration gradient between the solution and the crystal surface. However, in formation of clumps of needle-like branched crystals, called spherulites, the observed concentration at the surface was several times higher than that of the bulk solution. The authors attributed the difference to aggregates of loosely bound molecules near the interface.

Characterization of the dynamics near the crystal by FCS may provide direction for improving the crystallization process -- currently as much an art as a science, based on trial and error -- because the spherulites are not usable for structural characterizations.

"Although we knew something was different between the two crystal forms, the degree of concentration of the molecules in spherulites compared to that of the homogeneous state around tetragonal single crystals was surprising," says Tanaka.

The analytical result could lead to improvements in isolation of good crystals of biomolecules. For example, the results suggest that local heating by a laser could be used to control local concentrations and avoid spherulite formation.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tanaka et al. Slow molecular dynamics close to crystal surfaces during crystallization of a protein lysozyme studied by fluorescence correlation spectroscopy. The Journal of Chemical Physics, 2010; 133 (9): 095103 DOI: 10.1063/1.3478224

Cite This Page:

American Institute of Physics. "How do your crystals grow?." ScienceDaily. ScienceDaily, 15 September 2010. <www.sciencedaily.com/releases/2010/09/100914095928.htm>.
American Institute of Physics. (2010, September 15). How do your crystals grow?. ScienceDaily. Retrieved February 28, 2015 from www.sciencedaily.com/releases/2010/09/100914095928.htm
American Institute of Physics. "How do your crystals grow?." ScienceDaily. www.sciencedaily.com/releases/2010/09/100914095928.htm (accessed February 28, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, February 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Elon Musk's Hyperloop Moves Forward

Elon Musk's Hyperloop Moves Forward

Buzz60 (Feb. 27, 2015) Zipping around at 800-miles an hour is coming closer to reality in California. An entire town is being built around Elon Musk&apos;s Hyperloop concept and it wants you to stop in for a ride when it&apos;s ready. Brett Larson is on board. Video provided by Buzz60
Powered by NewsLook.com
Vibrating Bicycle Senses Traffic

Vibrating Bicycle Senses Traffic

Reuters - Innovations Video Online (Feb. 26, 2015) Dutch scientists have developed a smart bicycle that uses sensors, wireless technology and video to warn riders of traffic dangers. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
In Japan, Robot Dogs Are for Life -- And Death

In Japan, Robot Dogs Are for Life -- And Death

AFP (Feb. 25, 2015) Robot dogs are the perfect pet for some in Japan who go to repairmen-turned-vets when their pooch breaks down - while a full Buddhist funeral ceremony awaits those who don&apos;t make it. Duration: 02:40 Video provided by AFP
Powered by NewsLook.com
London Show Dissects History of Forensic Science

London Show Dissects History of Forensic Science

AFP (Feb. 25, 2015) Forensic science, which has fascinated generations with its unravelling of gruesome crime mysteries, is being put under the microscope in an exhibition of real criminal investigations in London. Duration: 00:53 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins