Featured Research

from universities, journals, and other organizations

How do your crystals grow?

Date:
September 15, 2010
Source:
American Institute of Physics
Summary:
New research uses fluorescence correlation spectroscopy to investigate the processes at the surface of a growing crystal. This work may help to improve the crystallization of biomolecules -- an important tool in pharmaceutical research and other fields.

Because one of the main bottlenecks in determining the structure of protein molecules is producing good isolated single crystals, improved crystallization techniques would be useful in a wide range of genomics and pharmaceutical research.

Research reported in the Journal of Chemical Physics uses fluorescence correlation spectroscopy (FCS) to investigate the processes at the surface of a growing crystal. By focusing a laser on the crystal surface and measuring the resulting fluorescence, FCS can resolve dimensions as small as a single wavelength of the light.

"Another advantage of fluorescence is that it provides a high signal-to-noise ratio," says author Shinpei Tanaka of Hiroshima University in Japan. "We are able to measure very dilute solutions at the crystal interface."

The researchers found that when single tetragonal crystals of egg-white lysozyme formed, there was no concentration gradient between the solution and the crystal surface. However, in formation of clumps of needle-like branched crystals, called spherulites, the observed concentration at the surface was several times higher than that of the bulk solution. The authors attributed the difference to aggregates of loosely bound molecules near the interface.

Characterization of the dynamics near the crystal by FCS may provide direction for improving the crystallization process -- currently as much an art as a science, based on trial and error -- because the spherulites are not usable for structural characterizations.

"Although we knew something was different between the two crystal forms, the degree of concentration of the molecules in spherulites compared to that of the homogeneous state around tetragonal single crystals was surprising," says Tanaka.

The analytical result could lead to improvements in isolation of good crystals of biomolecules. For example, the results suggest that local heating by a laser could be used to control local concentrations and avoid spherulite formation.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tanaka et al. Slow molecular dynamics close to crystal surfaces during crystallization of a protein lysozyme studied by fluorescence correlation spectroscopy. The Journal of Chemical Physics, 2010; 133 (9): 095103 DOI: 10.1063/1.3478224

Cite This Page:

American Institute of Physics. "How do your crystals grow?." ScienceDaily. ScienceDaily, 15 September 2010. <www.sciencedaily.com/releases/2010/09/100914095928.htm>.
American Institute of Physics. (2010, September 15). How do your crystals grow?. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2010/09/100914095928.htm
American Institute of Physics. "How do your crystals grow?." ScienceDaily. www.sciencedaily.com/releases/2010/09/100914095928.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins