Featured Research

from universities, journals, and other organizations

Researchers identify DNA damage repair gene in Fanconi anemia pathway

Date:
September 20, 2010
Source:
Rockefeller University
Summary:
After more than a century of technological refinements, zippers still get stuck. So do the molecular machines that routinely unzip the double helix of DNA in our cells after billions of years of evolution, and the results can be lethal.

DNA damage. Researchers identified the protein FAN1 (red) as part of the pathway involving other proteins such as FANCD2 (green) that rush to sites of DNA damage in cells and work together (yellow) to fix the problem.
Credit: Image courtesy of Rockefeller University

After more than a century of technological refinements, zippers still get stuck. So do the molecular machines that routinely unzip the double helix of DNA in our cells after billions of years of evolution, and the results can be lethal.

Related Articles


In research to be published July 30 in Molecular Cell and already available online, scientists at Rockefeller University and colleagues show how a previously uncharacterized protein associated with the cancer-causing disorder Fanconi anemia might aid in repairing the broken zippers in our genes. When two strands of DNA remain stuck together, they cannot replicate themselves or produce the transcripts they are supposed to make. This sticking point is one of the most deadly genetic perils, called an inter-strand crosslink, which threatens an average cell about 10 times a day.

"Repairing the inter-strand crosslink is a very complicated process," says Agata Smogorzewska, head of the Laboratory of Genome Maintenance at Rockefeller, who led the research. "It takes lots of players, and if they don't work correctly, the consequences can be terrible." Thirteen proteins are known to be involved in the Fanconi anemia pathway, which repairs inter-strand crosslinks. If any one of them is damaged, the result is Fanconi anemia, a disorder that leads to bone marrow failure and leukemia, among other cancers, as well as many developmental abnormalities.

Seeking other proteins that may play a part in the disease, Smogorzewska and colleagues developed a test to screen thousands of genes for those that might be involved in repairing DNA damage. Using a vast library of small hairpin RNAs, which can silence genes by preventing their transcripts from being translated into proteins, the team eliminated each of more than 32,000 human proteins from cells in the test tube. The researchers bombarded the defective cells with a molecule that causes crosslinks to test whether the missing protein impaired the cells' ability to survive after the damage.

These tests winnowed the list to 2,000 genes. "Then we had to narrow it down," Smogorzewska says. "So we did additional assays, looked at the domain architecture of candidate proteins and found one that is particularly interesting." A gene, which they dubbed FAN1, had two properties that suggested it could be important to DNA repair. One region of the gene coded for what's called a nuclease, an enzyme that cuts nucleic acids, the stuff that makes up DNA. "It also had a UBZ domain -- which usually binds proteins that are embellished by ubiquitin, a very common modification found during DNA damage response generally that is essential during crosslink repair."

The team wanted to confirm FAN1's role in DNA damage response, so they tagged the gene with a fluorescent protein and studied what happened when they damaged DNA, both by using a laser to cut the DNA and a molecule that induced inter-strand crosslinks. FAN1 glommed onto sites of the DNA damage. The researchers found that when they induced a mutation in the UBZ domain of the gene, it was rendered useless, meaning its restorative ability likely lies in its capacity to interact with ubiquitinated proteins in the Fanconi anemia pathway. As predicted, the nuclease domain of FAN1 was able to cut DNA, activity that is essential repairing the broken zippers.

Versions of the gene are present in distantly related organisms, from yeast to flies to humans, Smogorzewska says, suggesting a role in life's fundamental machinery for repairing DNA. The team's results make FAN1 a strong candidate to add to the list of the 13 mutations currently known to disrupt the DNA damage response in Fanconi anemia patients. Because it is also associated with a group of genes that predispose women for breast cancer, the researchers recommend that FAN1 be investigated for a role in that disease as well.


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Agata Smogorzewska, Rohini Desetty, Takamune T. Saito, Michael Schlabach, Francis P. Lach, Mathew E. Sowa, Alan B. Clark, Thomas A. Kunkel, J. Wade Harper, Monica P. Colaiαcovo. A Genetic Screen Identifies FAN1, a Fanconi Anemia-Associated Nuclease Necessary for DNA Interstrand Crosslink Repair. Molecular Cell, 2010; 39 (1): 36 DOI: 10.1016/j.molcel.2010.06.023

Cite This Page:

Rockefeller University. "Researchers identify DNA damage repair gene in Fanconi anemia pathway." ScienceDaily. ScienceDaily, 20 September 2010. <www.sciencedaily.com/releases/2010/09/100920212009.htm>.
Rockefeller University. (2010, September 20). Researchers identify DNA damage repair gene in Fanconi anemia pathway. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2010/09/100920212009.htm
Rockefeller University. "Researchers identify DNA damage repair gene in Fanconi anemia pathway." ScienceDaily. www.sciencedaily.com/releases/2010/09/100920212009.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) — Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) — Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) — Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins